
Project Gutenberg’s An Introduction to Mathematics, by Alfred North Whitehead

This eBook is for the use of anyone anywhere at no cost and with

almost no restrictions whatsoever. You may copy it, give it away or

re-use it under the terms of the Project Gutenberg License included

with this eBook or online at www.gutenberg.org

Title: An Introduction to Mathematics

Author: Alfred North Whitehead

Release Date: December 6, 2012 [EBook #41568]

Language: English

Character set encoding: ISO-8859-1

*** START OF THIS PROJECT GUTENBERG EBOOK AN INTRODUCTION TO MATHEMATICS ***



Produced by Andrew D. Hwang. (This ebook was produced using

OCR text generously provided by the University of

California, Santa Barbara, through the Internet Archive.)

transcriber’s note

The camera-quality files for this public-domain ebook
may be downloaded gratis at

www.gutenberg.org/ebooks/41568.

This ebook was produced using scanned images and
OCR text generously provided by the University of
California, Santa Barbara, through the Internet
Archive.

Minor typographical corrections and presentational
changes have been made without comment.

This PDF file is optimized for screen viewing, but
may be recompiled for printing. Please consult the
preamble of the LATEX source file for instructions and
other particulars.



HOME UNIVERSITY LIBRARY
OF MODERN KNOWLEDGE

AN INTRODUCTION TO

MATHEMATICS
By A. N. WHITEHEAD, Sc.D., F.R.S.

London
WILLIAMS & NORGATE

HENRY HOLT & Co., New York
Canada: WM. BRIGGS, Toronto

India: R. & T. WASHBOURNE, Ltd.



CONTENTS

CHAP. PAGE

I THE ABSTRACT NATURE OF MATHEMATICS 1

II VARIABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

III METHODS OF APPLICATION . . . . . . . . . . . . . . . . . . . 15

IV DYNAMICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

V THE SYMBOLISM OF MATHEMATICS. . . . . . . . . . 43

VI GENERALIZATIONS OF NUMBER . . . . . . . . . . . . . . 54

VII IMAGINARY NUMBERS . . . . . . . . . . . . . . . . . . . . . . . . . 67

VIII IMAGINARY NUMBERS (CONTINUED). . . . . . . . . 80

IX COORDINATE GEOMETRY . . . . . . . . . . . . . . . . . . . . . 90

X CONIC SECTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

XI FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

XII PERIODICITY IN NATURE . . . . . . . . . . . . . . . . . . . . . . 134

XIII TRIGONOMETRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

XIV SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

XV THE DIFFERENTIAL CALCULUS . . . . . . . . . . . . . . . 179

XVI GEOMETRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

XVII QUANTITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

NOTES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212



AN INTRODUCTION TO

MATHEMATICS

CHAPTER I

THE ABSTRACT NATURE OF MATHEMATICS

The study of mathematics is apt to commence in disap-
pointment. The important applications of the science, the
theoretical interest of its ideas, and the logical rigour of its
methods, all generate the expectation of a speedy introduc-
tion to processes of interest. We are told that by its aid the
stars are weighed and the billions of molecules in a drop of
water are counted. Yet, like the ghost of Hamlet’s father,
this great science eludes the efforts of our mental weapons
to grasp it—“ ’Tis here, ’tis there, ’tis gone”—and what we
do see does not suggest the same excuse for illusiveness as
sufficed for the ghost, that it is too noble for our gross meth-
ods. “A show of violence,” if ever excusable, may surely
be “offered” to the trivial results which occupy the pages of
some elementary mathematical treatises.

The reason for this failure of the science to live up to its
reputation is that its fundamental ideas are not explained to
the student disentangled from the technical procedure which
has been invented to facilitate their exact presentation in
particular instances. Accordingly, the unfortunate learner
finds himself struggling to acquire a knowledge of a mass
of details which are not illuminated by any general concep-
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tion. Without a doubt, technical facility is a first requisite
for valuable mental activity: we shall fail to appreciate the
rhythm of Milton, or the passion of Shelley, so long as we
find it necessary to spell the words and are not quite certain
of the forms of the individual letters. In this sense there is no
royal road to learning. But it is equally an error to confine
attention to technical processes, excluding consideration of
general ideas. Here lies the road to pedantry.

The object of the following Chapters is not to teach math-
ematics, but to enable students from the very beginning of
their course to know what the science is about, and why it
is necessarily the foundation of exact thought as applied to
natural phenomena. All allusion in what follows to detailed
deductions in any part of the science will be inserted merely
for the purpose of example, and care will be taken to make
the general argument comprehensible, even if here and there
some technical process or symbol which the reader does not
understand is cited for the purpose of illustration.

The first acquaintance which most people have with
mathematics is through arithmetic. That two and two make
four is usually taken as the type of a simple mathematical
proposition which everyone will have heard of. Arithmetic,
therefore, will be a good subject to consider in order to
discover, if possible, the most obvious characteristic of the
science. Now, the first noticeable fact about arithmetic is
that it applies to everything, to tastes and to sounds, to ap-
ples and to angels, to the ideas of the mind and to the bones
of the body. The nature of the things is perfectly indifferent,
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of all things it is true that two and two make four. Thus
we write down as the leading characteristic of mathematics
that it deals with properties and ideas which are applica-
ble to things just because they are things, and apart from
any particular feelings, or emotions, or sensations, in any
way connected with them. This is what is meant by calling
mathematics an abstract science.

The result which we have reached deserves attention. It
is natural to think that an abstract science cannot be of
much importance in the affairs of human life, because it has
omitted from its consideration everything of real interest. It
will be remembered that Swift, in his description of Gul-
liver’s voyage to Laputa, is of two minds on this point. He
describes the mathematicians of that country as silly and
useless dreamers, whose attention has to be awakened by
flappers. Also, the mathematical tailor measures his height
by a quadrant, and deduces his other dimensions by a rule
and compasses, producing a suit of very ill-fitting clothes.
On the other hand, the mathematicians of Laputa, by their
marvellous invention of the magnetic island floating in the
air, ruled the country and maintained their ascendency over
their subjects. Swift, indeed, lived at a time peculiarly un-
suited for gibes at contemporary mathematicians. Newton’s
Principia had just been written, one of the great forces which
have transformed the modern world. Swift might just as well
have laughed at an earthquake.

But a mere list of the achievements of mathematics is an
unsatisfactory way of arriving at an idea of its importance.
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It is worth while to spend a little thought in getting at the
root reason why mathematics, because of its very abstract-
ness, must always remain one of the most important topics
for thought. Let us try to make clear to ourselves why ex-
planations of the order of events necessarily tend to become
mathematical.

Consider how all events are interconnected. When we see
the lightning, we listen for the thunder; when we hear the
wind, we look for the waves on the sea; in the chill autumn,
the leaves fall. Everywhere order reigns, so that when some
circumstances have been noted we can foresee that others will
also be present. The progress of science consists in observing
these interconnections and in showing with a patient ingenu-
ity that the events of this evershifting world are but examples
of a few general connections or relations called laws. To see
what is general in what is particular and what is permanent
in what is transitory is the aim of scientific thought. In the
eye of science, the fall of an apple, the motion of a planet
round a sun, and the clinging of the atmosphere to the earth
are all seen as examples of the law of gravity. This possibility
of disentangling the most complex evanescent circumstances
into various examples of permanent laws is the controlling
idea of modern thought.

Now let us think of the sort of laws which we want in order
completely to realize this scientific ideal. Our knowledge of
the particular facts of the world around us is gained from
our sensations. We see, and hear, and taste, and smell, and
feel hot and cold, and push, and rub, and ache, and tingle.
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These are just our own personal sensations: my toothache
cannot be your toothache, and my sight cannot be your sight.
But we ascribe the origin of these sensations to relations
between the things which form the external world. Thus
the dentist extracts not the toothache but the tooth. And
not only so, we also endeavour to imagine the world as one
connected set of things which underlies all the perceptions of
all people. There is not one world of things for my sensations
and another for yours, but one world in which we both exist.
It is the same tooth both for dentist and patient. Also we
hear and we touch the same world as we see.

It is easy, therefore, to understand that we want to de-
scribe the connections between these external things in some
way which does not depend on any particular sensations,
nor even on all the sensations of any particular person. The
laws satisfied by the course of events in the world of external
things are to be described, if possible, in a neutral universal
fashion, the same for blind men as for deaf men, and the
same for beings with faculties beyond our ken as for normal
human beings.

But when we have put aside our immediate sensations,
the most serviceable part—from its clearness, definiteness,
and universality—of what is left is composed of our general
ideas of the abstract formal properties of things; in fact,
the abstract mathematical ideas mentioned above. Thus it
comes about that, step by step, and not realizing the full
meaning of the process, mankind has been led to search for
a mathematical description of the properties of the universe,
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because in this way only can a general idea of the course of
events be formed, freed from reference to particular persons
or to particular types of sensation. For example, it might be
asked at dinner: “What was it which underlay my sensation
of sight, yours of touch, and his of taste and smell?” the an-
swer being “an apple.” But in its final analysis, science seeks
to describe an apple in terms of the positions and motions of
molecules, a description which ignores me and you and him,
and also ignores sight and touch and taste and smell. Thus
mathematical ideas, because they are abstract, supply just
what is wanted for a scientific description of the course of
events.

This point has usually been misunderstood, from being
thought of in too narrow a way. Pythagoras had a glimpse
of it when he proclaimed that number was the source of all
things. In modern times the belief that the ultimate expla-
nation of all things was to be found in Newtonian mechanics
was an adumbration of the truth that all science as it grows
towards perfection becomes mathematical in its ideas.



CHAPTER II

VARIABLES

Mathematics as a science commenced when first some-
one, probably a Greek, proved propositions about any things
or about some things, without specification of definite par-
ticular things. These propositions were first enunciated by
the Greeks for geometry; and, accordingly, geometry was
the great Greek mathematical science. After the rise of ge-
ometry centuries passed away before algebra made a really
effective start, despite some faint anticipations by the later
Greek mathematicians.

The ideas of any and of some are introduced into algebra
by the use of letters, instead of the definite numbers of arith-
metic. Thus, instead of saying that 2 + 3 = 3 + 2, in algebra
we generalize and say that, if x and y stand for any two
numbers, then x + y = y + x. Again, in the place of saying
that 3 > 2, we generalize and say that if x be any number
there exists some number (or numbers) y such that y > x.
We may remark in passing that this latter assumption—for
when put in its strict ultimate form it is an assumption—is
of vital importance, both to philosophy and to mathemat-
ics; for by it the notion of infinity is introduced. Perhaps it
required the introduction of the arabic numerals, by which
the use of letters as standing for definite numbers has been
completely discarded in mathematics, in order to suggest to
mathematicians the technical convenience of the use of let-
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ters for the ideas of any number and some number. The
Romans would have stated the number of the year in which
this is written in the form MDCCCCX., whereas we write
it 1910, thus leaving the letters for the other usage. But this
is merely a speculation. After the rise of algebra the differen-
tial calculus was invented by Newton and Leibniz, and then
a pause in the progress of the philosophy of mathematical
thought occurred so far as these notions are concerned; and
it was not till within the last few years that it has been real-
ized how fundamental any and some are to the very nature
of mathematics, with the result of opening out still further
subjects for mathematical exploration.

Let us now make some simple algebraic statements, with
the object of understanding exactly how these fundamental
ideas occur.

(1) For any number x, x+ 2 = 2 + x;
(2) For some number x, x+ 2 = 3;
(3) For some number x, x+ 2 > 3.
The first point to notice is the possibilities contained in

the meaning of some, as here used. Since x+2 = 2+x for any
number x, it is true for some number x. Thus, as here used,
any implies some and some does not exclude any. Again,
in the second example, there is, in fact, only one number x,
such that x + 2 = 3, namely only the number 1. Thus the
some may be one number only. But in the third example, any
number x which is greater than 1 gives x+2 > 3. Hence there
are an infinite number of numbers which answer to the some
number in this case. Thus some may be anything between
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any and one only, including both these limiting cases.
It is natural to supersede the statements (2) and (3) by

the questions:
(2′) For what number x is x+ 2 = 3;
(3′) For what numbers x is x+ 2 > 3.
Considering (2′), x+ 2 = 3 is an equation, and it is easy

to see that its solution is x = 3 − 2 = 1. When we have
asked the question implied in the statement of the equation
x + 2 = 3, x is called the unknown. The object of the so-
lution of the equation is the determination of the unknown.
Equations are of great importance in mathematics, and it
seems as though (2′) exemplified a much more thoroughgo-
ing and fundamental idea than the original statement (2).
This, however, is a complete mistake. The idea of the un-
determined “variable” as occurring in the use of “some” or
“any” is the really important one in mathematics; that of the
“unknown” in an equation, which is to be solved as quickly
as possible, is only of subordinate use, though of course it is
very important. One of the causes of the apparent triviality
of much of elementary algebra is the preoccupation of the
text-books with the solution of equations. The same remark
applies to the solution of the inequality (3′) as compared to
the original statement (3).

But the majority of interesting formulæ, especially when
the idea of some is present, involve more than one variable.
For example, the consideration of the pairs of numbers x
and y (fractional or integral) which satisfy x+y = 1 involves
the idea of two correlated variables, x and y. When two
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variables are present the same two main types of statement
occur. For example, (1) for any pair of numbers, x and y,
x + y = y + x, and (2) for some pairs of numbers, x and y,
x+ y = 1.

The second type of statement invites consideration of the
aggregate of pairs of numbers which are bound together by
some fixed relation—in the case given, by the relation x+y =
1. One use of formulæ of the first type, true for any pair of
numbers, is that by them formulæ of the second type can be
thrown into an indefinite number of equivalent forms. For
example, the relation x+ y = 1 is equivalent to the relations

y + x = 1, (x− y) + 2y = 1, 6x+ 6y = 6,

and so on. Thus a skilful mathematician uses that equiva-
lent form of the relation under consideration which is most
convenient for his immediate purpose.

It is not in general true that, when a pair of terms satisfy
some fixed relation, if one of the terms is given the other
is also definitely determined. For example, when x and y
satisfy y2 = x, if x = 4, y can be ±2, thus, for any positive
value of x there are alternative values for y. Also in the
relation x+ y > 1, when either x or y is given, an indefinite
number of values remain open for the other.

Again there is another important point to be noticed. If
we restrict ourselves to positive numbers, integral or frac-
tional, in considering the relation x + y = 1, then, if either
x or y be greater than 1, there is no positive number which
the other can assume so as to satisfy the relation. Thus
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the “field” of the relation for x is restricted to numbers less
than 1, and similarly for the “field” open to y. Again, con-
sider integral numbers only, positive or negative, and take
the relation y2 = x, satisfied by pairs of such numbers. Then
whatever integral value is given to y, x can assume one cor-
responding integral value. So the “field” for y is unrestricted
among these positive or negative integers. But the “field”
for x is restricted in two ways. In the first place x must be
positive, and in the second place, since y is to be integral,
x must be a perfect square. Accordingly, the “field” of x is
restricted to the set of integers 12, 22, 32, 42, and so on, i.e.,
to 1, 4, 9, 16, and so on.

The study of the general properties of a relation between
pairs of numbers is much facilitated by the use of a diagram
constructed as follows:

A

B

P

XO

Y

M

N

1

1

x

x

yy

Fig. 1.



VARIABLES 12

Draw two lines OX and OY at right angles; let any num-
ber x be represented by x units (in any scale) of length
along OX, any number y by y units (in any scale) of length
along OY . Thus if OM , along OX, be x units in length,
and ON , along OY , be y units in length, by completing
the parallelogram OMPN we find a point P which corre-
sponds to the pair of numbers x and y. To each point there
corresponds one pair of numbers, and to each pair of num-
bers there corresponds one point. The pair of numbers are
called the coordinates of the point. Then the points whose
coordinates satisfy some fixed relation can be indicated in a
convenient way, by drawing a line, if they all lie on a line, or
by shading an area if they are all points in the area. If the
relation can be represented by an equation such as x+y = 1,
or y2 = x, then the points lie on a line, which is straight in
the former case and curved in the latter. For example, con-
sidering only positive numbers, the points whose coordinates
satisfy x+ y = 1 lie on the straight line AB in Fig. 1, where
0A = 1 and OB = 1. Thus this segment of the straight
line AB gives a pictorial representation of the properties of
the relation under the restriction to positive numbers.

Another example of a relation between two variables is
afforded by considering the variations in the pressure and
volume of a given mass of some gaseous substance—such as
air or coal-gas or steam—at a constant temperature. Let v be
the number of cubic feet in its volume and p its pressure in
lb. weight per square inch. Then the law, known as Boyle’s
law, expressing the relation between p and v as both vary, is



INTRODUCTION TO MATHEMATICS 13

that the product pv is constant, always supposing that the
temperature does not alter. Let us suppose, for example,
that the quantity of the gas and its other circumstances are
such that we can put pv = 1 (the exact number on the right-
hand side of the equation makes no essential difference).

A

B

C
P

VO

Q

M

N

v

p

Fig. 2.

Then in Fig. 2 we take two lines, OV and OP , at right an-
gles and draw OM along OV to represent v units of volume,
and ON along OP to represent p units of pressure. Then
the point Q, which is found by completing the parallelogram
OMQN , represents the state of the gas when its volume is
v cubic feet and its pressure is p lb. weight per square inch.
If the circumstances of the portion of gas considered are such
that pv = 1, then all these points Q which correspond to any
possible state of this portion of gas must lie on the curved
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line ABC, which includes all points for which p and v are
positive, and pv = 1. Thus this curved line gives a pictorial
representation of the relation holding between the volume
and the pressure. When the pressure is very big the cor-
responding point Q must be near C, or even beyond C on
the undrawn part of the curve; then the volume will be very
small. When the volume is big Q will be near to A, or be-
yond A; and then the pressure will be small. Notice that
an engineer or a physicist may want to know the particular
pressure corresponding to some definitely assigned volume.
Then we have the case of determining the unknown p when
v is a known number. But this is only in particular cases. In
considering generally the properties of the gas and how it will
behave, he has to have in his mind the general form of the
whole curve ABC and its general properties. In other words
the really fundamental idea is that of the pair of variables
satisfying the relation pv = 1. This example illustrates how
the idea of variables is fundamental, both in the applications
as well as in the theory of mathematics.



CHAPTER III

METHODS OF APPLICATION

The way in which the idea of variables satisfying a re-
lation occurs in the applications of mathematics is worth
thought, and by devoting some time to it we shall clear up
our thoughts on the whole subject.

Let us start with the simplest of examples:—Suppose that
building costs 1s. per cubic foot and that 20s. make £1.
Then in all the complex circumstances which attend the
building of a new house, amid all the various sensations
and emotions of the owner, the architect, the builder, the
workmen, and the onlookers as the house has grown to com-
pletion, this fixed correlation is by the law assumed to hold
between the cubic content and the cost to the owner, namely
that if x be the number of cubic feet, and £y the cost, then
20y = x. This correlation of x and y is assumed to be true
for the building of any house by any owner. Also, the vol-
ume of the house and the cost are not supposed to have
been perceived or apprehended by any particular sensation
or faculty, or by any particular man. They are stated in
an abstract general way, with complete indifference to the
owner’s state of mind when he has to pay the bill.

Now think a bit further as to what all this means. The
building of a house is a complicated set of circumstances. It
is impossible to begin to apply the law, or to test it, unless
amid the general course of events it is possible to recognize
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a definite set of occurrences as forming a particular instance
of the building of a house. In short, we must know a house
when we see it, and must recognize the events which belong
to its building. Then amidst these events, thus isolated in
idea from the rest of nature, the two elements of the cost
and cubic content must be determinable; and when they are
both determined, if the law be true, they satisfy the general
formula

20y = x.

But is the law true? Anyone who has had much to do with
building will know that we have here put the cost rather
high. It is only for an expensive type of house that it will
work out at this price. This brings out another point which
must be made clear. While we are making mathematical
calculations connected with the formula 20y = x, it is in-
different to us whether the law be true or false. In fact,
the very meanings assigned to x and y, as being a number
of cubic feet and a number of pounds sterling, are indiffer-
ent. During the mathematical investigation we are, in fact,
merely considering the properties of this correlation between
a pair of variable numbers x and y. Our results will apply
equally well, if we interpret y to mean a number of fishermen
and x the number of fish caught, so that the assumed law is
that on the average each fisherman catches twenty fish. The
mathematical certainty of the investigation only attaches to
the results considered as giving properties of the correlation
20y = x between the variable pair of numbers x and y. There
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is no mathematical certainty whatever about the cost of the
actual building of any house. The law is not quite true and
the result it gives will not be quite accurate. In fact, it may
well be hopelessly wrong.

Now all this no doubt seems very obvious. But in truth
with more complicated instances there is no more common
error than to assume that, because prolonged and accurate
mathematical calculations have been made, the application
of the result to some fact of nature is absolutely certain.
The conclusion of no argument can be more certain than
the assumptions from which it starts. All mathematical cal-
culations about the course of nature must start from some
assumed law of nature, such, for instance, as the assumed law
of the cost of building stated above. Accordingly, however
accurately we have calculated that some event must occur,
the doubt always remains—Is the law true? If the law states
a precise result, almost certainly it is not precisely accurate;
and thus even at the best the result, precisely as calculated,
is not likely to occur. But then we have no faculty capable of
observation with ideal precision, so, after all, our inaccurate
laws may be good enough.

We will now turn to an actual case, that of Newton and
the Law of Gravity. This law states that any two bodies at-
tract one another with a force proportional to the product of
their masses, and inversely proportional to the square of the
distance between them. Thus if m and M are the masses
of the two bodies, reckoned in lbs. say, and d miles is the
distance between them, the force on either body, due to the
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attraction of the other and directed towards it, is propor-

tional to
mM

d2
; thus this force can be written as equal to

kmM

d2
, where k is a definite number depending on the ab-

solute magnitude of this attraction and also on the scale by
which we choose to measure forces. It is easy to see that, if
we wish to reckon in terms of forces such as the weight of
a mass of 1 lb., the number which k represents must be ex-
tremely small; for when m and M and d are each put equal

to 1,
kmM

d2
becomes the gravitational attraction of two equal

masses of 1 lb. at the distance of one mile, and this is quite
inappreciable.

However, we have now got our formula for the force of

attraction. If we call this force F , it is F = k
mM

d2
, giv-

ing the correlation between the variables F , m, M , and d.
We all know the story of how it was found out. Newton, it
states, was sitting in an orchard and watched the fall of an
apple, and then the law of universal gravitation burst upon
his mind. It may be that the final formulation of the law
occurred to him in an orchard, as well as elsewhere—and he
must have been somewhere. But for our purposes it is more
instructive to dwell upon the vast amount of preparatory
thought, the product of many minds and many centuries,
which was necessary before this exact law could be formu-
lated. In the first place, the mathematical habit of mind and
the mathematical procedure explained in the previous two
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chapters had to be generated; otherwise Newton could never
have thought of a formula representing the force between any
two masses at any distance. Again, what are the meanings
of the terms employed, Force, Mass, Distance? Take the eas-
iest of these terms, Distance. It seems very obvious to us to
conceive all material things as forming a definite geometri-
cal whole, such that the distances of the various parts are
measurable in terms of some unit length, such as a mile or a
yard. This is almost the first aspect of a material structure
which occurs to us. It is the gradual outcome of the study of
geometry and of the theory of measurement. Even now, in
certain cases, other modes of thought are convenient. In a
mountainous country distances are often reckoned in hours.
But leaving distance, the other terms, Force and Mass, are
much more obscure. The exact comprehension of the ideas
which Newton meant to convey by these words was of slow
growth, and, indeed, Newton himself was the first man who
had thoroughly mastered the true general principles of Dy-
namics.

Throughout the middle ages, under the influence of Aris-
totle, the science was entirely misconceived. Newton had
the advantage of coming after a series of great men, notably
Galileo, in Italy, who in the previous two centuries had re-
constructed the science and had invented the right way of
thinking about it. He completed their work. Then, finally,
having the ideas of force, mass, and distance, clear and dis-
tinct in his mind, and realising their importance and their
relevance to the fall of an apple and the motions of the plan-
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ets, he hit upon the law of gravitation and proved it to be
the formula always satisfied in these various motions.

The vital point in the application of mathematical for-
mulæ is to have clear ideas and a correct estimate of their
relevance to the phenomena under observation. No less than
ourselves, our remote ancestors were impressed with the im-
portance of natural phenomena and with the desirability of
taking energetic measures to regulate the sequence of events.
Under the influence of irrelevant ideas they executed elabo-
rate religious ceremonies to aid the birth of the new moon,
and performed sacrifices to save the sun during the crisis of
an eclipse. There is no reason to believe that they were more
stupid than we are. But at that epoch there had not been
opportunity for the slow accumulation of clear and relevant
ideas.

The sort of way in which physical sciences grow into a
form capable of treatment by mathematical methods is il-
lustrated by the history of the gradual growth of the science
of electromagnetism. Thunderstorms are events on a grand
scale, arousing terror in men and even animals. From the
earliest times they must have been objects of wild and fan-
tastic hypotheses, though it may be doubted whether our
modern scientific discoveries in connection with electricity
are not more astonishing than any of the magical explana-
tions of savages. The Greeks knew that amber (Greek, elec-
tron) when rubbed would attract light and dry bodies. In
1600 a.d., Dr. Gilbert, of Colchester, published the first work
on the subject in which any scientific method is followed.
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He made a list of substances possessing properties similar to
those of amber; he must also have the credit of connecting,
however vaguely, electric and magnetic phenomena. At the
end of the seventeenth and throughout the eighteenth cen-
tury knowledge advanced. Electrical machines were made,
sparks were obtained from them; and the Leyden Jar was
invented, by which these effects could be intensified. Some
organised knowledge was being obtained; but still no rele-
vant mathematical ideas had been found out. Franklin, in
the year 1752, sent a kite into the clouds and proved that
thunderstorms were electrical.

Meanwhile from the earliest epoch (2634 b.c.) the Chi-
nese had utilized the characteristic property of the compass
needle, but do not seem to have connected it with any the-
oretical ideas. The really profound changes in human life
all have their ultimate origin in knowledge pursued for its
own sake. The use of the compass was not introduced into
Europe till the end of the twelfth century a.d., more than
3000 years after its first use in China. The importance which
the science of electromagnetism has since assumed in every
department of human life is not due to the superior practical
bias of Europeans, but to the fact that in the West electri-
cal and magnetic phenomena were studied by men who were
dominated by abstract theoretic interests.

The discovery of the electric current is due to two Ital-
ians, Galvani in 1780, and Volta in 1792. This great in-
vention opened a new series of phenomena for investigation.
The scientific world had now three separate, though allied,
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groups of occurrences on hand—the effects of “statical” elec-
tricity arising from frictional electrical machines, the mag-
netic phenomena, and the effects due to electric currents.
From the end of the eighteenth century onwards, these three
lines of investigation were quickly interconnected and the
modern science of electromagnetism was constructed, which
now threatens to transform human life.

Mathematical ideas now appear. During the decade 1780
to 1789, Coulomb, a Frenchman, proved that magnetic poles
attract or repel each other, in proportion to the inverse
square of their distances, and also that the same law holds for
electric charges—laws curiously analogous to that of gravi-
tation. In 1820, Öersted, a Dane, discovered that electric
currents exert a force on magnets, and almost immediately
afterwards the mathematical law of the force was correctly
formulated by Ampère, a Frenchman, who also proved that
two electric currents exerted forces on each other. “The ex-
perimental investigation by which Ampère established the
law of the mechanical action between electric currents is one
of the most brilliant achievements in science. The whole,
theory and experiment, seems as if it had leaped, full-grown
and full armed, from the brain of the ‘Newton of Electric-
ity.’ It is perfect in form, and unassailable in accuracy, and
it is summed up in a formula from which all the phenomena
may be deduced, and which must always remain the cardinal
formula of electro-dynamics.”∗

∗Electricity and Magnetism, Clerk Maxwell, Vol. II., ch. iii.
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The momentous laws of induction between currents and
between currents and magnets were discovered by Michael
Faraday in 1831–82. Faraday was asked: “What is the use
of this discovery?” He answered: “What is the use of a
child—it grows to be a man.” Faraday’s child has grown to
be a man and is now the basis of all the modern applications
of electricity. Faraday also reorganized the whole theoretical
conception of the science. His ideas, which had not been fully
understood by the scientific world, were extended and put
into a directly mathematical form by Clerk Maxwell in 1873.
As a result of his mathematical investigations, Maxwell rec-
ognized that, under certain conditions, electrical vibrations
ought to be propagated. He at once suggested that the vi-
brations which form light are electrical. This suggestion has
since been verified, so that now the whole theory of light
is nothing but a branch of the great science of electricity.
Also Herz, a German, in 1888, following on Maxwell’s ideas,
succeeded in producing electric vibrations by direct electri-
cal methods. His experiments are the basis of our wireless
telegraphy.

In more recent years even more fundamental discoveries
have been made, and the science continues to grow in theo-
retic importance and in practical interest. This rapid sketch
of its progress illustrates how, by the gradual introduction
of the relevant theoretic ideas, suggested by experiment and
themselves suggesting fresh experiments, a whole mass of iso-
lated and even trivial phenomena are welded together into
one coherent science, in which the results of abstract mathe-
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matical deductions, starting from a few simple assumed laws,
supply the explanation to the complex tangle of the course
of events.

Finally, passing beyond the particular sciences of elec-
tromagnetism and light, we can generalize our point of view
still further, and direct our attention to the growth of math-
ematical physics considered as one great chapter of scientific
thought. In the first place, what in the barest outlines is the
story of its growth?

It did not begin as one science, or as the product of one
band of men. The Chaldean shepherds watched the skies, the
agents of Government in Mesopotamia and Egypt measured
the land, priests and philosophers brooded on the general
nature of all things. The vast mass of the operations of na-
ture appeared due to mysterious unfathomable forces. “The
wind bloweth where it listeth” expresses accurately the blank
ignorance then existing of any stable rules followed in detail
by the succession of phenomena. In broad outline, then as
now, a regularity of events was patent. But no minute trac-
ing of their interconnection was possible, and there was no
knowledge how even to set about to construct such a science.

Detached speculations, a few happy or unhappy shots
at the nature of things, formed the utmost which could be
produced.

Meanwhile land-surveys had produced geometry, and the
observations of the heavens disclosed the exact regularity
of the solar system. Some of the later Greeks, such as
Archimedes, had just views on the elementary phenomena of
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hydrostatics and optics. Indeed, Archimedes, who combined
a genius for mathematics with a physical insight, must rank
with Newton, who lived nearly two thousand years later,
as one of the founders of mathematical physics. He lived
at Syracuse, the great Greek city of Sicily. When the Ro-
mans besieged the town (in 212 to 210 b.c.), he is said to
have burned their ships by concentrating on them, by means
of mirrors, the sun’s rays. The story is highly improbable,
but is good evidence of the reputation which he had gained
among his contemporaries for his knowledge of optics. At
the end of this siege he was killed. According to one account
given by Plutarch, in his life of Marcellus, he was found by
a Roman soldier absorbed in the study of a geometrical di-
agram which he had traced on the sandy floor of his room.
He did not immediately obey the orders of his captor, and so
was killed. For the credit of the Roman generals it must be
said that the soldiers had orders to spare him. The internal
evidence for the other famous story of him is very strong; for
the discovery attributed to him is one eminently worthy of
his genius for mathematical and physical research. Luckily,
it is simple enough to be explained here in detail. It is one
of the best easy examples of the method of application of
mathematical ideas to physics.

Hiero, King of Syracuse, had sent a quantity of gold to
some goldsmith to form the material of a crown. He sus-
pected that the craftsmen had abstracted some of the gold
and had supplied its place by alloying the remainder with
some baser metal. Hiero sent the crown to Archimedes and
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asked him to test it. In these days an indefinite number of
chemical tests would be available. But then Archimedes had
to think out the matter afresh. The solution flashed upon
him as he lay in his bath. He jumped up and ran through
the streets to the palace, shouting Eureka! Eureka! (I have
found it, I have found it). This day, if we knew which it
was, ought to be celebrated as the birthday of mathematical
physics; the science came of age when Newton sat in his or-
chard. Archimedes had in truth made a great discovery. He
saw that a body when immersed in water is pressed upwards
by the surrounding water with a resultant force equal to the
weight of the water it displaces. This law can be proved the-
oretically from the mathematical principles of hydrostatics
and can also be verified experimentally. Hence, if W lb. be
the weight of the crown, as weighed in air, and w lb. be the
weight of the water which it displaces when completely im-
mersed, W − w would be the extra upward force necessary
to sustain the crown as it hung in water.

Now, this upward force can easily be ascertained by
weighing the body as it hangs in water, as shown in the
annexed figure. If the weights in the right-hand scale come
to F lb., then the apparent weight of the crown in water is
F lb.; and we thus have

F = W − w

and thus
w = W − F,
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The crown

Weights

Water

Fig. 3.

and

(A)
W

w
=

W

W − F
where W and F are determined by the easy, and fairly pre-

cise, operation of weighing. Hence, by equation (A),
W

w
is

known. But
W

w
is the ratio of the weight of the crown to the

weight of an equal volume of water. This ratio is the same
for any lump of metal of the same material: it is now called
the specific gravity of the material, and depends only on the
intrinsic nature of the substance and not on its shape or
quantity. Thus to test if the crown were of gold, Archimedes
had only to take a lump of indisputably pure gold and find
its specific gravity by the same process. If the two specific
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gravities agreed, the crown was pure; if they disagreed, it
was debased.

This argument has been given at length, because not only
is it the first precise example of the application of mathe-
matical ideas to physics, but also because it is a perfect and
simple example of what must be the method and spirit of
the science for all time.

The death of Archimedes by the hands of a Roman sol-
dier is symbolical of a world-change of the first magnitude:
the theoretical Greeks, with their love of abstract science,
were superseded in the leadership of the European world by
the practical Romans. Lord Beaconsfield, in one of his nov-
els, has defined a practical man as a man who practises the
errors of his forefathers. The Romans were a great race, but
they were cursed with the sterility which waits upon prac-
ticality. They did not improve upon the knowledge of their
forefathers, and all their advances were confined to the mi-
nor technical details of engineering. They were not dreamers
enough to arrive at new points of view, which could give a
more fundamental control over the forces of nature. No Ro-
man lost his life because he was absorbed in the contempla-
tion of a mathematical diagram.



CHAPTER IV

DYNAMICS

The world had to wait for eighteen hundred years till
the Greek mathematical physicists found successors. In the
sixteenth and seventeenth centuries of our era great Italians,
in particular Leonardo da Vinci, the artist (born 1452, died
1519), and Galileo (born 1564, died 1642), rediscovered the
secret, known to Archimedes, of relating abstract mathemat-
ical ideas with the experimental investigation of natural phe-
nomena. Meanwhile the slow advance of mathematics and
the accumulation of accurate astronomical knowledge had
placed natural philosophers in a much more advantageous
position for research. Also the very egoistic self-assertion
of that age, its greediness for personal experience, led its
thinkers to want to see for themselves what happened; and
the secret of the relation of mathematical theory and exper-
iment in inductive reasoning was practically discovered. It
was an act eminently characteristic of the age that Galileo,
a philosopher, should have dropped the weights from the
leaning tower of Pisa. There are always men of thought and
men of action; mathematical physics is the product of an age
which combined in the same men impulses to thought with
impulses to action.

This matter of the dropping of weights from the tower
marks picturesquely an essential step in knowledge, no less a
step than the first attainment of correct ideas on the science
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of dynamics, the basal science of the whole subject. The
particular point in dispute was as to whether bodies of dif-
ferent weights would fall from the same height in the same
time. According to a dictum of Aristotle, universally fol-
lowed up to that epoch, the heavier weight would fall the
quicker. Galileo affirmed that they would fall in the same
time, and proved his point by dropping weights from the top
of the leaning tower. The apparent exceptions to the rule
all arise when, for some reason, such as extreme lightness or
great speed, the air resistance is important. But neglecting
the air the law is exact.

Galileo’s successful experiment was not the result of a
mere lucky guess. It arose from his correct ideas in con-
nection with inertia and mass. The first law of motion, as
following Newton we now enunciate it, is—Every body con-
tinues in its state of rest or of uniform motion in a straight
line, except so far as it is compelled by impressed force to
change that state. This law is more than a dry formula: it is
also a pæan of triumph over defeated heretics. The point at
issue can be understood by deleting from the law the phrase
“or of uniform motion in a straight line.” We there obtain
what might be taken as the Aristotelian opposition formula:
“Every body continues in its state of rest except so far as it
is compelled by impressed force to change that state.”

In this last false formula it is asserted that, apart from
force, a body continues in a state of rest; and accordingly
that, if a body is moving, a force is required to sustain the
motion; so that when the force ceases, the motion ceases.
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The true Newtonian law takes diametrically the opposite
point of view. The state of a body unacted on by force
is that of uniform motion in a straight line, and no exter-
nal force or influence is to be looked for as the cause, or,
if you like to put it so, as the invariable accompaniment of
this uniform rectilinear motion. Rest is merely a particular
case of such motion, merely when the velocity is and remains
zero. Thus, when a body is moving, we do not seek for any
external influence except to explain changes in the rate of
the velocity or changes in its direction. So long as the body
is moving at the same rate and in the same direction there
is no need to invoke the aid of any forces.

The difference between the two points of view is well
seen by reference to the theory of the motion of the planets.
Copernicus, a Pole, born at Thorn in West Prussia (born
1473, died 1543), showed how much simpler it was to con-
ceive the planets, including the earth as revolving round the
sun in orbits which are nearly circular; and later, Kepler,
a German mathematician, in the year 1609 proved that, in
fact, the orbits are practically ellipses, that is, a special sort
of oval curves which we will consider later in more detail.
Immediately the question arose as to what are the forces
which preserve the planets in this motion. According to the
old false view, held by Kepler, the actual velocity itself re-
quired preservation by force. Thus he looked for tangential
forces as in the accompanying figure (4). But according to
the Newtonian law, apart from some force the planet would
move for ever with its existing velocity in a straight line, and
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thus depart entirely from the sun. Newton, therefore, had to
search for a force which would bend the motion round into

Sun

Planet

Force

Fig. 5.

its elliptical orbit. This he showed must be a force directed
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towards the sun as in the next figure (5). In fact, the force
is the gravitational attraction of the sun acting according to
the law of the inverse square of the distance, which has been
stated above.

The science of mechanics rose among the Greeks from a
consideration of the theory of the mechanical advantage ob-
tained by the use of a lever, and also from a consideration
of various problems connected with the weights of bodies. It
was finally put on its true basis at the end of the sixteenth
and during the seventeenth centuries, as the preceding ac-
count shows, partly with the view of explaining the theory
of falling bodies, but chiefly in order to give a scientific the-
ory of planetary motions. But since those days dynamics has
taken upon itself a more ambitious task, and now claims to
be the ultimate science of which the others are but branches.
The claim amounts to this: namely, that the various qual-
ities of things perceptible to the senses are merely our pe-
culiar mode of appreciating changes in position on the part
of things existing in space. For example, suppose we look
at Westminster Abbey. It has been standing there, grey and
immovable, for centuries past. But, according to modern sci-
entific theory, that greyness, which so heightens our sense of
the immobility of the building, is itself nothing but our way
of appreciating the rapid motions of the ultimate molecules,
which form the outer surface of the building and communi-
cate vibrations to a substance called the ether. Again we lay
our hands on its stones and note their cool, even tempera-
ture, so symbolic of the quiet repose of the building. But this
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feeling of temperature simply marks our sense of the transfer
of heat from the hand to the stone, or from the stone to the
hand; and, according to modern science, heat is nothing but
the agitation of the molecules of a body. Finally, the organ
begins playing, and again sound is nothing but the result of
motions of the air striking on the drum of the ear.

Thus the endeavour to give a dynamical explanation of
phenomena is the attempt to explain them by statements of
the general form, that such and such a substance or body was
in this place and is now in that place. Thus we arrive at the
great basal idea of modern science, that all our sensations
are the result of comparisons of the changed configurations
of things in space at various times. It follows therefore, that
the laws of motion, that is, the laws of the changes of config-
urations of things, are the ultimate laws of physical science.

In the application of mathematics to the investigation of
natural philosophy, science does systematically what ordi-
nary thought does casually. When we talk of a chair, we
usually mean something which we have been seeing or feel-
ing in some way; though most of our language will presup-
pose that there is something which exists independently of
our sight or feeling. Now in mathematical physics the op-
posite course is taken. The chair is conceived without any
reference to anyone in particular, or to any special modes of
perception. The result is that the chair becomes in thought
a set of molecules in space, or a group of electrons, a por-
tion of the ether in motion, or however the current scientific
ideas describe it. But the point is that science reduces the
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chair to things moving in space and influencing each other’s
motions. Then the various elements or factors which enter
into a set of circumstances, as thus conceived, are merely
the things, like lengths of lines, sizes of angles, areas, and
volumes, by which the positions of bodies in space can be
settled. Of course, in addition to these geometrical elements
the fact of motion and change necessitates the introduction
of the rates of changes of such elements, that is to say, veloc-
ities, angular velocities, accelerations, and suchlike things.
Accordingly, mathematical physics deals with correlations
between variable numbers which are supposed to represent
the correlations which exist in nature between the measures
of these geometrical elements and of their rates of change.
But always the mathematical laws deal with variables, and
it is only in the occasional testing of the laws by reference to
experiments, or in the use of the laws for special predictions
that definite numbers are substituted.

The interesting point about the world as thus conceived
in this abstract way throughout the study of mathematical
physics, where only the positions and shapes of things are
considered together with their changes, is that the events of
such an abstract world are sufficient to “explain” our sensa-
tions. When we hear a sound, the molecules of the air have
been agitated in a certain way: given the agitation, or air-
waves as they are called, all normal people hear sound; and
if there are no air-waves, there is no sound. And, similarly,
a physical cause or origin, or parallel event (according as
different people might like to phrase it) underlies our other
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sensations. Our very thoughts appear to correspond to con-
formations and motions of the brain; injure the brain and you
injure the thoughts. Meanwhile the events of this physical
universe succeed each other according to the mathematical
laws which ignore all special sensations and thoughts and
emotions.

Now, undoubtedly, this is the general aspect of the rela-
tion of the world of mathematical physics to our emotions,
sensations, and thoughts; and a great deal of controversy has
been occasioned by it and much ink spilled. We need only
make one remark. The whole situation has arisen, as we
have seen, from the endeavour to describe an external world
“explanatory” of our various individual sensations and emo-
tions, but a world also, not essentially dependent upon any
particular sensations or upon any particular individual. Is
such a world merely but one huge fairy tale? But fairy tales
are fantastic and arbitrary: if in truth there be such a world,
it ought to submit itself to an exact description, which deter-
mines accurately its various parts and their mutual relations.
Now, to a large degree, this scientific world does submit itself
to this test and allow its events to be explored and predicted
by the apparatus of abstract mathematical ideas. It certainly
seems that here we have an inductive verification of our ini-
tial assumption. It must be admitted that no inductive proof
is conclusive; but if the whole idea of a world which has ex-
istence independently of our particular perceptions of it be
erroneous, it requires careful explanation why the attempt
to characterise it, in terms of that mathematical remnant of
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our ideas which would apply to it, should issue in such a
remarkable success.

It would take us too far afield to enter into a detailed ex-
planation of the other laws of motion. The remainder of this
chapter must be devoted to the explanation of remarkable
ideas which are fundamental, both to mathematical physics
and to pure mathematics: these are the ideas of vector quan-
tities and the parallelogram law for vector addition. We have
seen that the essence of motion is that a body was at A and
is now at C. This transference from A to C requires two
distinct elements to be settled before it is completely de-
termined, namely its magnitude (i.e. the length AC) and
its direction. Now anything, like this transference, which is
completely given by the determination of a magnitude and

A B

CD

Fig. 6.

a direction is called a vector. For example, a velocity re-
quires for its definition the assignment of a magnitude and
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of a direction. It must be of so many miles per hour in such
and such a direction. The existence and the independence
of these two elements in the determination of a velocity are
well illustrated by the action of the captain of a ship, who
communicates with different subordinates respecting them:
he tells the chief engineer the number of knots at which he
is to steam, and the helmsman the compass bearing of the
course which he is to keep. Again the rate of change of ve-
locity, that is velocity added per unit time, is also a vector
quantity: it is called the acceleration. Similarly a force in
the dynamical sense is another vector quantity. Indeed, the
vector nature of forces follows at once according to dynam-
ical principles from that of velocities and accelerations; but
this is a point which we need not go into. It is sufficient here
to say that a force acts on a body with a certain magnitude
in a certain direction.

Now all vectors can be graphically represented by straight
lines. All that has to be done is to arrange: (i) a scale accord-
ing to which units of length correspond to units of magnitude
of the vector—for example, one inch to a velocity of 10 miles
per hour in the case of velocities, and one inch to a force
of 10 tons weight in the case of forces—and (ii) a direction
of the line on the diagram corresponding to the direction of
the vector. Then a line drawn with the proper number of
inches of length in the proper direction represents the re-
quired vector on the arbitrarily assigned scale of magnitude.
This diagrammatic representation of vectors is of the first
importance. By its aid we can enunciate the famous “par-
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allelogram law” for the addition of vectors of the same kind
but in different directions.

Consider the vectorAC in figure 6 as representative of the
changed position of a body from A to C: we will call this the
vector of transportation. It will be noted that, if the reduc-
tion of physical phenomena to mere changes in positions, as
explained above, is correct, all other types of physical vectors
are really reducible in some way or other to this single type.
Now the final transportation from A to C is equally well ef-
fected by a transportation from A to B and a transportation
from B to C, or, completing the parallelogram ABCD, by
a transportation from A to D and a transportation from D
to C. These transportations as thus successively applied are
said to be added together. This is simply a definition of what
we mean by the addition of transportations. Note further
that, considering parallel lines as being lines drawn in the
same direction, the transportations B to C and A to D may
be conceived as the same transportation applied to bodies in
the two initial positions B and A. With this conception we
may talk of the transportation A to D as applied to a body
in any position, for example at B. Thus we may say that
the transportation A to C can be conceived as the sum of
the two transportations A to B and A to D applied in any
order. Here we have the parallelogram law for the addition
of transportations: namely, if the transportations are A to B
and A to D, complete the parallelogram ABCD, and then
the sum of the two is the diagonal AC.

All this at first sight may seem to be very artificial. But
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it must be observed that nature itself presents us with the
idea. For example, a steamer is moving in the direction AD
(cf. fig. 6) and a man walks across its deck. If the steamer
were still, in one minute he would arrive at B; but during
that minute his starting point A on the deck has moved
to D, and his path on the deck has moved from AB to DC.
So that, in fact, his transportation has been from A to C
over the surface of the sea. It is, however, presented to us
analysed into the sum of two transportations, namely, one
from A to B relatively to the steamer, and one from A to D
which is the transportation of the steamer.

By taking into account the element of time, namely one
minute, this diagram of the man’s transportation AC rep-
resents his velocity. For if AC represented so many feet of
transportation, it now represents a transportation of so many
feet per minute, that is to say, it represents the velocity of
the man. Then AB and AD represent two velocities, namely,
his velocity relatively to the steamer, and the velocity of the
steamer, whose “sum” makes up his complete velocity. It is
evident that diagrams and definitions concerning transporta-
tions are turned into diagrams and definitions concerning
velocities by conceiving the diagrams as representing trans-
portations per unit time. Again, diagrams and definitions
concerning velocities are turned into diagrams and defini-
tions concerning accelerations by conceiving the diagrams as
representing velocities added per unit time.

Thus by the addition of vector velocities and of vector
accelerations, we mean the addition according to the paral-
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lelogram law.
Also, according to the laws of motion a force is fully rep-

resented by the vector acceleration it produces in a body
of given mass. Accordingly, forces will be said to be added
when their joint effect is to be reckoned according to the
parallelogram law.

Hence for the fundamental vectors of science, namely
transportations, velocities, and forces, the addition of any
two of the same kind is the production of a “resultant” vec-
tor according to the rule of the parallelogram law.

By far the simplest type of parallelogram is a rectan-
gle, and in pure mathematics it is the relation of the single
vector AC to the two component vectors, AB and AD, at
right angles (cf. fig. 7), which is continually recurring. Let
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x, y, and r units represent the lengths of AB, AD, and AC,
and let m units of angle represent the magnitude of the an-
gle BAC. Then the relations between x, y, r, and m, in
all their many aspects are the continually recurring topic of
pure mathematics; and the results are of the type required
for application to the fundamental vectors of mathematical
physics. This diagram is the chief bridge over which the re-
sults of pure mathematics pass in order to obtain application
to the facts of nature.



CHAPTER V

THE SYMBOLISM OF MATHEMATICS

We now return to pure mathematics, and consider more
closely the apparatus of ideas out of which the science is
built. Our first concern is with the symbolism of the sci-
ence, and we start with the simplest and universally known
symbols, namely those of arithmetic.

Let us assume for the present that we have sufficiently
clear ideas about the integral numbers, represented in the
Arabic notation by 0, 1, 2, . . . , 9, 10, 11, . . . , 100, 101, . . .
and so on. This notation was introduced into Europe
through the Arabs, but they apparently obtained it from
Hindoo sources. The first known work∗ in which it is sys-
tematically explained is a work by an Indian mathematician,
Bhaskara (born 1114 a.d.). But the actual numerals can be
traced back to the seventh century of our era, and perhaps
were originally invented in Tibet. For our present purposes,
however, the history of the notation is a detail. The in-
teresting point to notice is the admirable illustration which
this numeral system affords of the enormous importance
of a good notation. By relieving the brain of all unneces-
sary work, a good notation sets it free to concentrate on
more advanced problems, and in effect increases the mental

∗For the detailed historical facts relating to pure mathematics, I
am chiefly indebted to A Short History of Mathematics, by W. W. R.
Ball.
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power of the race. Before the introduction of the Arabic
notation, multiplication was difficult, and the division even
of integers called into play the highest mathematical fac-
ulties. Probably nothing in the modern world would have
more astonished a Greek mathematician than to learn that,
under the influence of compulsory education, a large pro-
portion of the population of Western Europe could perform
the operation of division for the largest numbers. This fact
would have seemed to him a sheer impossibility. The conse-
quential extension of the notation to decimal fractions was
not accomplished till the seventeenth century. Our modern
power of easy reckoning with decimal fractions is the al-
most miraculous result of the gradual discovery of a perfect
notation.

Mathematics is often considered a difficult and mysteri-
ous science, because of the numerous symbols which it em-
ploys. Of course, nothing is more incomprehensible than a
symbolism which we do not understand. Also a symbolism,
which we only partially understand and are unaccustomed to
use, is difficult to follow. In exactly the same way the techni-
cal terms of any profession or trade are incomprehensible to
those who have never been trained to use them. But this is
not because they are difficult in themselves. On the contrary
they have invariably been introduced to make things easy. So
in mathematics, granted that we are giving any serious at-
tention to mathematical ideas, the symbolism is invariably
an immense simplification. It is not only of practical use,
but is of great interest. For it represents an analysis of the
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ideas of the subject and an almost pictorial representation of
their relations to each other. If anyone doubts the utility of
symbols, let him write out in full, without any symbol what-
ever, the whole meaning of the following equations which
represent some of the fundamental laws of algebra∗:—

x+ y = y + x,(1)

(x+ y) + z = x+ (y + z),(2)

x× y = y × x,(3)

(x× y)× z = x× (y × z),(4)

x× (y + z) = (x× y) + (x× z).(5)

Here (1) and (2) are called the commutative and associa-
tive laws for addition, (3) and (4) are the commutative and
associative laws for multiplication, and (5) is the distributive
law relating addition and multiplication. For example, with-
out symbols, (1) becomes: If a second number be added to
any given number the result is the same as if the first given
number had been added to the second number.

This example shows that, by the aid of symbolism, we
can make transitions in reasoning almost mechanically by the
eye, which otherwise would call into play the higher faculties
of the brain.

It is a profoundly erroneous truism, repeated by all
copy-books and by eminent people when they are making
speeches, that we should cultivate the habit of thinking of

∗Cf. Note A, p. 207.
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what we are doing. The precise opposite is the case. Civ-
ilization advances by extending the number of important
operations which we can perform without thinking about
them. Operations of thought are like cavalry charges in a
battle—they are strictly limited in number, they require
fresh horses, and must only be made at decisive moments.

One very important property for symbolism to possess is
that it should be concise, so as to be visible at one glance
of the eye and to be rapidly written. Now we cannot place
symbols more concisely together than by placing them in
immediate juxtaposition. In a good symbolism therefore,
the juxtaposition of important symbols should have an im-
portant meaning. This is one of the merits of the Arabic
notation for numbers; by means of ten symbols, 0, 1, 2, 3,
4, 5, 6, 7, 8, 9, and by simple juxtaposition it symbolizes
any number whatever. Again in algebra, when we have two
variable numbers x and y, we have to make a choice as to
what shall be denoted by their juxtaposition xy. Now the
two most important ideas on hand are those of addition and
multiplication. Mathematicians have chosen to make their
symbolism more concise by defining xy to stand for x × y.
Thus the laws (3), (4), and (5) above are in general written,

xy = yx, (xy)z = x(yz), x(y + z) = xy + xz,

thus securing a great gain in conciseness. The same rule
of symbolism is applied to the juxtaposition of a definite
number and a variable: we write 3x for 3 × x, and 30x for
30× x.
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It is evident that in substituting definite numbers for the
variables some care must be taken to restore the ×, so as
not to conflict with the Arabic notation. Thus when we
substitute 2 for x and 3 for y in xy, we must write 2 × 3
for xy, and not 23 which means 20 + 3.

It is interesting to note how important for the develop-
ment of science a modest-looking symbol may be. It may
stand for the emphatic presentation of an idea, often a very
subtle idea, and by its existence make it easy to exhibit the
relation of this idea to all the complex trains of ideas in which
it occurs. For example, take the most modest of all symbols,
namely, 0, which stands for the number zero. The Roman
notation for numbers had no symbol for zero, and probably
most mathematicians of the ancient world would have been
horribly puzzled by the idea of the number zero. For, after
all, it is a very subtle idea, not at all obvious. A great deal
of discussion on the meaning of the zero of quantity will be
found in philosophic works. Zero is not, in real truth, more
difficult or subtle in idea than the other cardinal numbers.
What do we mean by 1 or by 2, or by 3? But we are familiar
with the use of these ideas, though we should most of us be
puzzled to give a clear analysis of the simpler ideas which
go to form them. The point about zero is that we do not
need to use it in the operations of daily life. No one goes
out to buy zero fish. It is in a way the most civilized of all
the cardinals, and its use is only forced on us by the needs of
cultivated modes of thought. Many important services are
rendered by the symbol 0, which stands for the number zero.
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The symbol developed in connection with the Arabic no-
tation for numbers of which it is an essential part. For in
that notation the value of a digit depends on the position in
which it occurs. Consider, for example, the digit 5, as occur-
ring in the numbers 25, 51, 3512, 5213. In the first number 5
stands for five, in the second number 5 stands for fifty, in
the third number for five hundred, and in the fourth number
for five thousand. Now, when we write the number fifty-one
in the symbolic form 51, the digit 1 pushes the digit 5 along
to the second place (reckoning from right to left) and thus
gives it the value fifty. But when we want to symbolize fifty
by itself, we can have no digit 1 to perform this service; we
want a digit in the units place to add nothing to the total
and yet to push the 5 along to the second place. This service
is performed by 0, the symbol for zero. It is extremely prob-
able that the men who introduced for this purpose had no
definite conception in their minds of the number zero. They
simply wanted a mark to symbolize the fact that nothing
was contributed by the digit’s place in which it occurs. The
idea of zero probably took shape gradually from a desire to
assimilate the meaning of this mark to that of the marks, 1,
2, . . . , 9, which do represent cardinal numbers. This would
not represent the only case in which a subtle idea has been
introduced into mathematics by a symbolism which in its
origin was dictated by practical convenience.

Thus the first use of 0 was to make the arable notation
possible—no slight service. We can imagine that when it
had been introduced for this purpose, practical men, of the
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sort who dislike fanciful ideas, deprecated the silly habit of
identifying it with a number zero. But they were wrong, as
such men always are when they desert their proper function
of masticating food which others have prepared. For the next
service performed by the symbol 0 essentially depends upon
assigning to it the function of representing the number zero.

This second symbolic use is at first sight so absurdly sim-
ple that it is difficult to make a beginner realize its impor-
tance. Let us start with a simple example. In Chapter II.
we mentioned the correlation between two variable numbers
x and y represented by the equation x + y = 1. This can
be represented in an indefinite number of ways; for example,
x = 1− y, y = 1− x, 2x+ 3y − 1 = x+ 2y, and so on. But
the important way of stating it is

x+ y − 1 = 0.

Similarly the important way of writing the equation x = 1
is x− 1 = 0, and of representing the equation 3x− 2 = 2x2

is 2x2 − 3x + 2 = 0. The point is that all the symbols
which represent variables, e.g. x and y, and the symbols
representing some definite number other than zero, such as 1
or 2 in the examples above, are written on the left-hand side,
so that the whole left-hand side is equated to the number
zero. The first man to do this is said to have been Thomas
Harriot, born at Oxford in 1560 and died in 1621. But what
is the importance of this simple symbolic procedure? It made
possible the growth of the modern conception of algebraic
form.
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This is an idea to which we shall have continually to
recur; it is not going too far to say that no part of modern
mathematics can be properly understood without constant
recurrence to it. The conception of form is so general that it
is difficult to characterize it in abstract terms. At this stage
we shall do better merely to consider examples. Thus the
equations 2x−3 = 0, x−1 = 0, 5x−6 = 0, are all equations of
the same form, namely, equations involving one unknown x,
which is not multiplied by itself, so that x2, x3, etc., do
not appear. Again 3x2 − 2x + 1 = 0, x2 − 3x + 2 = 0,
x2 − 4 = 0, are all equations of the same form, namely,
equations involving one unknown x in which x×x, that is x2,
appears. These equations are called quadratic equations.
Similarly cubic equations, in which x3 appears, yield another
form, and so on. Among the three quadratic equations given
above there is a minor difference between the last equation,
x2− 4 = 0, and the preceding two equations, due to the fact
that x (as distinct from x2) does not appear in the last and
does in the other two. This distinction is very unimportant
in comparison with the great fact that they are all three
quadratic equations.

Then further there are the forms of equation stating cor-
relations between two variables; for example, x+ y − 1 = 0,
2x + 3y − 8 = 0, and so on. These are examples of what
is called the linear form of equation. The reason for this
name of “linear” is that the graphic method of representa-
tion, which is explained at the end of Chapter II., always
represents such equations by a straight line. Then there are
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other forms for two variables—for example, the quadratic
form, the cubic form, and so on. But the point which we
here insist upon is that this study of form is facilitated, and,
indeed, made possible, by the standard method of writing
equations with the symbol 0 on the right-hand side.

There is yet another function performed by 0 in relation
to the study of form. Whatever number x may be, 0×x = 0,
and x+0 = x. By means of these properties minor differences
of form can be assimilated. Thus the difference mentioned
above between the quadratic equations x2− 3x+ 2 = 0, and
x2− 4 = 0, can be obliterated by writing the latter equation
in the form x2 + (0 × x) − 4 = 0. For, by the laws stated
above, x2 + (0 × x) − 4 = x2 + 0 − 4 = x2 − 4. Hence the
equation x2 − 4 = 0 is merely representative of a particular
class of quadratic equations and belongs to the same general
form as does x2 − 3x+ 2 = 0.

For these three reasons the symbol 0, representing the
number zero, is essential to modern mathematics. It has
rendered possible types of investigation which would have
been impossible without it.

The symbolism of mathematics is in truth the outcome
of the general ideas which dominate the science. We have
now two such general ideas before us, that of the variable
and that of algebraic form. The junction of these concepts
has imposed on mathematics another type of symbolism al-
most quaint in its character, but none the less effective. We
have seen that an equation involving two variables, x and y,
represents a particular correlation between the pair of vari-
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ables. Thus x+y−1 = 0 represents one definite correlation,
and 3x + 2y − 5 = 0 represents another definite correlation
between the variables x and y; and both correlations have
the form of what we have called linear correlations. But
now, how can we represent any linear correlation between
the variable numbers x and y? Here we want to symbol-
ize any linear correlation; just as x symbolizes any number.
This is done by turning the numbers which occur in the def-
inite correlation 3x + 2y − 5 = 0 into letters. We obtain
ax + by − c = 0. Here a, b, c, stand for variable numbers
just as do x and y: but there is a difference in the use of
the two sets of variables. We study the general properties
of the relationship between x and y while a, b, and c have
unchanged values. We do not determine what the values of
a, b, and c are; but whatever they are, they remain fixed
while we study the relation between the variables x and y
for the whole group of possible values of x and y. But when
we have obtained the properties of this correlation, we note
that, because a, b, and c have not in fact been determined,
we have proved properties which must belong to any such
relation. Thus, by now varying a, b, and c, we arrive at the
idea that ax+ by− c = 0 represents a variable linear correla-
tion between x and y. In comparison with x and y, the three
variables a, b, and c are called constants. Variables used in
this way are sometimes also called parameters.

Now, mathematicians habitually save the trouble of ex-
plaining which of their variables are to be treated as “con-
stants,” and which as variables, considered as correlated in
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their equations, by using letters at the end of the alphabet for
the “variable” variables, and letters at the beginning of the
alphabet for the “constant” variables, or parameters. The
two systems meet naturally about the middle of the alpha-
bet. Sometimes a word or two of explanation is necessary;
but as a matter of fact custom and common sense are usu-
ally sufficient, and surprisingly little confusion is caused by
a procedure which seems so lax.

The result of this continual elimination of definite num-
bers by successive layers of parameters is that the amount of
arithmetic performed by mathematicians is extremely small.
Many mathematicians dislike all numerical computation and
are not particularly expert at it. The territory of arithmetic
ends where the two ideas of “variables” and of “algebraic
form” commence their sway.



CHAPTER VI

GENERALIZATIONS OF NUMBER

One great peculiarity of mathematics is the set of al-
lied ideas which have been invented in connection with the
integral numbers from which we started. These ideas may
be called extensions or generalizations of number. In the
first place there is the idea of fractions. The earliest treatise
on arithmetic which we possess was written by an Egyptian
priest, named Ahmes, between 1700 b.c. and 1100 b.c., and
it is probably a copy of a much older work. It deals largely
with the properties of fractions. It appears, therefore, that
this concept was developed very early in the history of math-
ematics. Indeed the subject is a very obvious one. To divide
a field into three equal parts, and to take two of the parts,
must be a type of operation which had often occurred. Ac-
cordingly, we need not be surprised that the men of remote
civilizations were familiar with the idea of two-thirds, and
with allied notions. Thus as the first generalization of num-
ber we place the concept of fractions. The Greeks thought
of this subject rather in the form of ratio, so that a Greek
would naturally say that a line of two feet in length bears
to a line of three feet in length the ratio of 2 to 3. Under
the influence of our algebraic notation we would more often
say that one line was two-thirds of the other in length, and
would think of two-thirds as a numerical multiplier.

In connection with the theory of ratio, or fractions, the



INTRODUCTION TO MATHEMATICS 55

Greeks made a great discovery, which has been the occasion
of a large amount of philosophical as well as mathematical
thought. They found out the existence of “incommensu-
rable” ratios. They proved, in fact, during the course of
their geometrical investigations that, starting with a line of
any length, other lines must exist whose lengths do not bear
to the original length the ratio of any pair of integers—or,
in other words, that lengths exist which are not any exact
fraction of the original length.

For example, the diagonal of a square cannot be expressed
as any fraction of the side of the same square; in our modern
notation the length of the diagonal is

√
2 times the length

of the side. But there is no fraction which exactly repre-
sents

√
2. We can approximate to

√
2 as closely as we like,

but we never exactly reach its value. For example,
49

25
is just

less than 2, and
9

4
is greater than 2, so that

√
2 lies between

7

5
and

3

2
. But the best systematic way of approximating

to
√

2 in obtaining a series of decimal fractions, each bigger
than the last, is by the ordinary method of extracting the

square root; thus the series is 1,
14

10
,

141

100
,

1414

1000
, and so on.

Ratios of this sort are called by the Greeks incommen-
surable. They have excited from the time of the Greeks
onwards a great deal of philosophic discussion, and the diffi-
culties connected with them have only recently been cleared
up.
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We will put the incommensurable ratios with the frac-
tions, and consider the whole set of integral numbers, frac-
tional numbers, and incommensurable numbers as forming
one class of numbers which we will call “real numbers.” We
always think of the real numbers as arranged in order of mag-
nitude, starting from zero and going upwards, and becoming
indefinitely larger and larger as we proceed. The real num-
bers are conveniently represented by points on a line. Let
OX be any line bounded at O and stretching away indefi-

O

0

M

1
2

A

1

N

3
2

B

2

P

5
2

C

3

Q

7
2

D

4

X

nitely in the direction OX. Take any convenient point, A,
on it, so that OA represents the unit length; and divide off
lengths AB, BC, CD, and so on, each equal to OA. Then
the point O represents the number 0, A the number 1, B the
number 2, and so on. In fact the number represented by
any point is the measure of its distance from O, in terms of
the unit length OA. The points between O and A represent
the proper fractions and the incommensurable numbers less

than 1; the middle point of OA represents
1

2
, that of AB rep-

resents
3

2
, that of BC represents

5

2
, and so on. In this way

every point on OX represents some one real number, and
every real number is represented by some one point on OX.

The series (or row) of points along OX, starting from O
and moving regularly in the direction from O to X, repre-
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sents the real numbers as arranged in an ascending order of
size, starting from zero and continually increasing as we go
on.

All this seems simple enough, but even at this stage there
are some interesting ideas to be got at by dwelling on these
obvious facts. Consider the series of points which represent
the integral numbers only, namely, the points, O, A, B, C,
D, etc. Here there is a first point O, a definite next point, A,
and each point, such as A or B, has one definite immediate
predecessor and one definite immediate successor, with the
exception of O, which has no predecessor; also the series goes
on indefinitely without end. This sort of order is called the
type of order of the integers; its essence is the possession
of next-door neighbours on either side with the exception
of No. 1 in the row. Again consider the integers and frac-
tions together, omitting the points which correspond to the
incommensurable ratios. The sort of serial order which we
now obtain is quite different. There is a first term O; but
no term has any immediate predecessor or immediate suc-
cessor. This is easily seen to be the case, for between any
two fractions we can always find another fraction interme-
diate in value. One very simple way of doing this is to add
the fractions together and to halve the result. For exam-
ple, between 2

3
and 3

4
, the fraction 1

2
(2
3

+ 3
4
), that is 17

24
, lies;

and between 2
3

and 17
24

the fraction 1
2
(2
3

+ 17
24

), that is 33
48

, lies;
and so on indefinitely. Because of this property the series is
said to be “compact.” There is no end point to the series,
which increases indefinitely without limit as we go along the
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line OX. It would seem at first sight as though the type of
series got in this way from the fractions, always including
the integers, would be the same as that got from all the real
numbers, integers, fractions, and incommensurables taken
together, that is, from all the points on the line OX. All
that we have hitherto said about the series of fractions ap-
plies equally well to the series of all real numbers. But there
are important differences which we now proceed to develop.
The absence of the incommensurables from the series of frac-
tions leaves an absence of endpoints to certain classes. Thus,
consider the incommensurable

√
2. In the series of real num-

bers this stands between all the numbers whose squares are
less than 2, and all the numbers whose squares are greater
than 2. But keeping to the series of fractions alone and not
thinking of the incommensurables, so that we cannot bring
in
√

2, there is no fraction which has the property of dividing
off the series into two parts in this way, i.e. so that all the
members on one side have their squares less than 2, and on
the other side greater than 2. Hence in the series of frac-
tions there is a quasi-gap where

√
2 ought to come. This

presence of quasi-gaps in the series of fractions may seem a
small matter; but any mathematician, who happens to read
this, knows that the possible absence of limits or maxima
to a class of numbers, which yet does not spread over the
whole series of numbers, is no small evil. It is to avoid this
difficulty that recourse is had to the incommensurables, so
as to obtain a complete series with no gaps.

There is another even more fundamental difference be-
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tween the two series. We can rearrange the fractions in a
series like that of the integers, that is, with a first term, and
such that each term has an immediate successor and (except
the first term) an immediate predecessor. We can show how
this can be done. Let every term in the series of fractions
and integers be written in the fractional form by writing 1

1

for 1, 2
1

for 2, and so on for all the integers, excluding 0. Also
for the moment we will reckon fractions which are equal in
value but not reduced to their lowest terms as distinct; so
that, for example, until further notice 2

3
, 4

6
, 6

9
, 8

12
, etc., are

all reckoned as distinct. Now group the fractions into classes
by adding together the numerator and denominator of each
term. For the sake of brevity call this sum of the numerator
and denominator of a fraction its index. Thus 7 is the index
of 4

3
, and also of 3

4
, and of 2

5
. Let the fractions in each class

be all fractions which have some specified index, which may
therefore also be called the class index. Now arrange these
classes in the order of magnitude of their indices. The first
class has the index 2, and its only member is 1

1
; the second

class has the index 3, and its members are 1
2

and 2
1
; the third

class has the index 4, and its members are 1
3
, 2
2
, 3
1
; the fourth

class has the index 5, and its members are 1
4
, 2

3
, 3

2
, 4

1
; and so

on. It is easy to see that the number of members (still in-
cluding fractions not in their lowest terms) belonging to any
class is one less than its index. Also the members of any one
class can be arranged in order by taking the first member
to be the fraction with numerator 1, the second member to
have the numerator 2, and so on, up to (n−1) where n is the
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index. Thus for the class of index n, the members appear in
the order

1

n− 1
,

2

n− 2
,

3

n− 3
, . . . ,

n− 1

1
.

The members of the first four classes have in fact been men-
tioned in this order. Thus the whole set of fractions have
now been arranged in an order like that of the integers. It
runs thus

1

1
,

1

2
,

2

1
,

1

3
,

[
2

2

]
,

3

1
,

1

4
,

2

3
,

3

2
,

4

1
, . . . ,

n− 1

1
,

1

n− 1
,

2

n− 2
,

3

n− 3
, . . . ,

n− 1

1
,

1

n
,

and so on.
Now we can get rid of all repetitions of fractions of the

same value by simply striking them out whenever they ap-
pear after their first occurrence. In the few initial terms writ-
ten down above, 2

2
which is enclosed above in square brackets

is the only fraction not in its lowest terms. It has occurred
before as 1

1
. Thus this must be struck out. But the series is

still left with the same properties, namely, (a) there is a first
term, (b) each term has next-door neighbours, (c) the series
goes on without end.

It can be proved that it is not possible to arrange the
whole series of real numbers in this way. This curious fact
was discovered by Georg Cantor, a German mathematician
still living; it is of the utmost importance in the philosophy
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of mathematical ideas. We are here in fact touching on the
fringe of the great problems of the meaning of continuity and
of infinity.

Another extension of number comes from the introduc-
tion of the idea of what has been variously named an opera-
tion or a step, names which are respectively appropriate from
slightly different points of view. We will start with a partic-
ular case. Consider the statement 2 + 3 = 5. We add 3 to 2
and obtain 5. Think of the operation of adding 3: let this
be denoted by +3. Again 4− 3 = 1. Think of the operation
of subtracting 3: let this be denoted by −3. Thus instead of
considering the real numbers in themselves, we consider the
operations of adding or subtracting them: instead of

√
2, we

consider +
√

2 and −
√

2, namely the operations of adding
√

2
and of subtracting

√
2. Then we can add these operations,

of course in a different sense of addition to that in which
we add numbers. The sum of two operations is the single
operation which has the same effect as the two operations
applied successively. In what order are the two operations
to be applied? The answer is that it is indifferent, since for
example

2 + 3 + 1 = 2 + 1 + 3;

so that the addition of the steps +3 and +1 is commutative.
Mathematicians have a habit, which is puzzling to those

engaged in tracing out meanings, but is very convenient in
practice, of using the same symbol in different though allied
senses. The one essential requisite for a symbol in their eyes
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is that, whatever its possible varieties of meaning, the formal
laws for its use shall always be the same. In accordance with
this habit the addition of operations is denoted by + as well
as the addition of numbers. Accordingly we can write

(+3) + (+1) = +4;

where the middle + on the left-hand side denotes the ad-
dition of the operations +3 and +1. But, furthermore, we
need not be so very pedantic in our symbolism, except in
the rare instances when we are directly tracing meanings;
thus we always drop the first + of a line and the brackets,
and never write two + signs running. So the above equation
becomes

3 + 1 = 4,

which we interpret as simple numerical addition, or as the
more elaborate addition of operations which is fully ex-
pressed in the previous way of writing the equation, or lastly
as expressing the result of applying the operation +1 to the
number 3 and obtaining the number 4. Any interpretation
which is possible is always correct. But the only interpre-
tation which is always possible, under certain conditions,
is that of operations. The other interpretations often give
nonsensical results.

This leads us at once to a question, which must have been
rising insistently in the reader’s mind: What is the use of all
this elaboration? At this point our friend, the practical man,
will surely step in and insist on sweeping away all these silly
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cobwebs of the brain. The answer is that what the math-
ematician is seeking is Generality. This is an idea worthy
to be placed beside the notions of the Variable and of Form
so far as concerns its importance in governing mathematical
procedure. Any limitation whatsoever upon the generality of
theorems, or of proofs, or of interpretation is abhorrent to the
mathematical instinct. These three notions, of the variable,
of form, and of generality, compose a sort of mathematical
trinity which preside over the whole subject. They all really
spring from the same root, namely from the abstract nature
of the science.

Let us see how generality is gained by the introduction
of this idea of operations. Take the equation x + 1 = 3; the
solution is x = 2. Here we can interpret our symbols as mere
numbers, and the recourse to “operations” is entirely unnec-
essary. But, if x is a mere number, the equation x + 3 = 1
is nonsense. For x should be the number of things which re-
main when you have taken 3 things away from 1 thing; and
no such procedure is possible. At this point our idea of alge-
braic form steps in, itself only generalization under another
aspect. We consider, therefore, the general equation of the
same form as x+ 1 = 3. This equation is x+ a = b, and its
solution is x = b− a. Here our difficulties become acute; for
this form can only be used for the numerical interpretation
so long as b is greater than a, and we cannot say without
qualification that a and b may be any constants. In other
words we have introduced a limitation on the variability of
the “constants” a and b, which we must drag like a chain
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throughout all our reasoning. Really prolonged mathemati-
cal investigations would be impossible under such conditions.
Every equation would at last be buried under a pile of limita-
tions. But if we now interpret our symbols as “operations,”
all limitation vanishes like magic. The equation x + 1 = 3
gives x = +2, the equation x + 3 = 1 gives x = −2, the
equation x + a = b gives x = b− a which is an operation of
addition or subtraction as the case may be. We need never
decide whether b− a represents the operation of addition or
of subtraction, for the rules of procedure with the symbols
are the same in either case.

It does not fall within the plan of this work to write a
detailed chapter of elementary algebra. Our object is merely
to make plain the fundamental ideas which guide the forma-
tion of the science. Accordingly we do not further explain the
detailed rules by which the “positive and negative numbers”
are multiplied and otherwise combined. We have explained
above that positive and negative numbers are operations.
They have also been called “steps.” Thus +3 is the step by
which we go from 2 to 5, and −3 is the step backwards by
which we go from 5 to 2. Consider the line OX divided in
the way explained in the earlier part of the chapter, so that
its points represent numbers. Then +2 is the step from O

O A

+1

B

+2

C

+3

D EA′
−1

B′
−2

C ′
−3

D′ XX ′

to B, or from A to C, or (if the divisions are taken back-
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wards along OX ′) from C ′ to A′, or from D′ to B′, and so
on. Similarly −2 is the step from O to B′, or from B′ to D′,
or from B to O, or from C to A.

We may consider the point which is reached by a step
fromO, as representative of that step. Thus A represents +1,
B represents +2, A′ represents −1, B′ represents −2, and so
on. It will be noted that, whereas previously with the mere
“unsigned” real numbers the points on one side of O only,
namely along OX, were representative of numbers, now with
steps every point on the whole line stretching on both sides
of O is representative of a step. This is a pictorial repre-
sentation of the superior generality introduced by the posi-
tive and negative numbers, namely the operations or steps.
These “signed” numbers are also particular cases of what
have been called vectors (from the Latin veho, I draw or
carry). For we may think of a particle as carried from O
to A, or from A to B.

In suggesting a few pages ago that the practical man
would object to the subtlety involved by the introduction
of the positive and negative numbers, we were libelling that
excellent individual. For in truth we are on the scene of one
of his greatest triumphs. If the truth must be confessed, it
was the practical man himself who first employed the ac-
tual symbols + and −. Their origin is not very certain,
but it seems most probable that they arose from the marks
chalked on chests of goods in German warehouses, to de-
note excess or defect from some standard weight. The ear-
liest notice of them occurs in a book published at Leipzig,
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in a.d. 1489. They seem first to have been employed in
mathematics by a German mathematician, Stifel, in a book
published at Nuremburg in 1544 a.d. But then it is only
recently that the Germans have come to be looked on as em-
phatically a practical nation. There is an old epigram which
assigns the empire of the sea to the English, of the land to
the French, and of the clouds to the Germans. Surely it was
from the clouds that the Germans fetched + and −; the ideas
which these symbols have generated are much too important
for the welfare of humanity to have come from the sea or
from the land.

The possibilities of application of the positive and neg-
ative numbers are very obvious. If lengths in one direction
are represented by positive numbers, those in the opposite
direction are represented by negative numbers. If a velocity
in one direction is positive, that in the opposite direction
is negative. If a rotation round a dial in the opposite di-
rection to the hands of a clock (anti-clockwise) is positive,
that in the clockwise direction is negative. If a balance at
the bank is positive, an overdraft is negative. If vitreous
electrification is positive, resinous electrification is negative.
Indeed, in this latter case, the terms positive electrification
and negative electrification, considered as mere names, have
practically driven out the other terms. An endless series of
examples could be given. The idea of positive and negative
numbers has been practically the most successful of mathe-
matical subtleties.



CHAPTER VII

IMAGINARY NUMBERS

If the mathematical ideas dealt with in the last chapter
have been a popular success, those of the present chapter
have excited almost as much general attention. But their
success has been of a different character, it has been what
the French term a succès de scandale. Not only the prac-
tical man, but also men of letters and philosophers have
expressed their bewilderment at the devotion of mathemati-
cians to mysterious entities which by their very name are
confessed to be imaginary. At this point it may be useful
to observe that a certain type of intellect is always worry-
ing itself and others by discussion as to the applicability of
technical terms. Are the incommensurable numbers prop-
erly called numbers? Are the positive and negative numbers
really numbers? Are the imaginary numbers imaginary, and
are they numbers?—are types of such futile questions. Now,
it cannot be too clearly understood that, in science, technical
terms are names arbitrarily assigned, like Christian names to
children. There can be no question of the names being right
or wrong. They may be judicious or injudicious; for they
can sometimes be so arranged as to be easy to remember,
or so as to suggest relevant and important ideas. But the
essential principle involved was quite clearly enunciated in
Wonderland to Alice by Humpty Dumpty, when he told her,
à propos of his use of words, “I pay them extra and make
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them mean what I like.” So we will not bother as to whether
imaginary numbers are imaginary, or as to whether they are
numbers, but will take the phrase as the arbitrary name of a
certain mathematical idea, which we will now endeavour to
make plain.

The origin of the conception is in every way similar to
that of the positive and negative numbers. In exactly the
same way it is due to the three great mathematical ideas of
the variable, of algebraic form, and of generalization. The
positive and negative numbers arose from the consideration
of equations like x+ 1 = 3, x+ 3 = 1, and the general form
x+ a = b. Similarly the origin of imaginary numbers is due
to equations like x2 + 1 = 3, x2 + 3 = 1, and x2 + a = b.
Exactly the same process is gone through. The equation
x2 + 1 = 3 becomes x2 = 2, and this has two solutions,
either x = +

√
2, or x = −

√
2. The statement that there are

these alternative solutions is usually written x = ±
√

2. So
far all is plain sailing, as it was in the previous case. But now
an analogous difficulty arises. For the equation x2 + 3 = 1
gives x2 = −2 and there is no positive or negative number
which, when multiplied by itself, will give a negative square.
Hence, if our symbols are to mean the ordinary positive or
negative numbers, there is no solution to x2 = −2, and the
equation is in fact nonsense. Thus, finally taking the general
form x2+a = b, we find the pair of solutions x = ±

√
(b− a),

when, and only when, b is not less than a. Accordingly we
cannot say unrestrictedly that the “constants” a and b may
be any numbers, that is, the “constants” a and b are not, as
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they ought to be, independent unrestricted “variables”; and
so again a host of limitations and restrictions will accumulate
round our work as we proceed.

The same task as before therefore awaits us: we must
give a new interpretation to our symbols, so that the solu-
tions ±

√
(b− a) for the equation x2 + a = b always have

meaning. In other words, we require an interpretation of the
symbols so that

√
a always has meaning whether a be posi-

tive or negative. Of course, the interpretation must be such
that all the ordinary formal laws for addition, subtraction,
multiplication, and division hold good; and also it must not
interfere with the generality which we have attained by the
use of the positive and negative numbers. In fact, it must in
a sense include them as special cases. When a is negative we
may write −c2 for it, so that c2 is positive. Then

√
a =

√
(−c2) =

√
{(−1)× c2}

=
√

(−1)
√
c2 = c

√
(−1).

Hence, if we can so interpret our symbols that
√

(−1) has

a meaning, we have attained our object. Thus
√

(−1) has
come to be looked on as the head and forefront of all the
imaginary quantities.

This business of finding an interpretation for
√

(−1) is
a much tougher job than the analogous one of interpret-
ing −1. In fact, while the easier problem was solved almost
instinctively as soon as it arose, it at first hardly occurred,
even to the greatest mathematicians, that here a problem
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existed which was perhaps capable of solution. Equations
like x2 = −3, when they arose, were simply ruled aside as
nonsense.

However, it came to be gradually perceived during the
eighteenth century, and even earlier, how very convenient
it would be if an interpretation could be assigned to these
nonsensical symbols. Formal reasoning with these symbols
was gone through, merely assuming that they obeyed the
ordinary algebraic laws of transformation; and it was seen
that a whole world of interesting results could be attained, if
only these symbols might legitimately be used. Many math-
ematicians were not then very clear as to the logic of their
procedure, and an idea gained ground that, in some myste-
rious way, symbols which mean nothing can by appropriate
manipulation yield valid proofs of propositions. Nothing can
be more mistaken. A symbol which has not been properly
defined is not a symbol at all. It is merely a blot of ink on
paper which has an easily recognized shape. Nothing can be
proved by a succession of blots, except the existence of a bad
pen or a careless writer. It was during this epoch that the ep-
ithet “imaginary” came to be applied to

√
(−1). What these

mathematicians had really succeeded in proving were a series
of hypothetical propositions, of which this is the blank form:
If interpretations exist for

√
(−1) and for the addition, sub-

traction, multiplication, and division of
√

(−1) which make
the ordinary algebraic rules (e.g. x + y = y + x, etc.) to be
satisfied, then such and such results follows. It was natural
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that the mathematicians should not always appreciate the
big “If,” which ought to have preceded the statements of
their results.

As may be expected the interpretation, when found, was
a much more elaborate affair than that of the negative num-
bers and the reader’s attention must be asked for some care-
ful preliminary explanation. We have already come across
the representation of a point by two numbers. By the aid of
the positive and negative numbers we can now represent the

X ′ X

Y ′

Y

O M
M ′

N

N ′

PP ′

P ′′ P ′′′

xx′

y

y′

y

y′

y

y′

Fig. 8.

position of any point in a plane by a pair of such numbers.
Thus we take the pair of straight lines XOX ′ and Y OY ′,
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at right angles, as the “axes” from which we start all our
measurements. Lengths measured along OX and OY are
positive, and measured backwards along OX ′ and OY ′ are
negative. Suppose that a pair of numbers, written in order,
e.g. (+3,+1), so that there is a first number (+3 in the above
example), and a second number (+1 in the above example),
represents measurements from O along XOX ′ for the first
number, and along Y OY ′ for the second number. Thus (cf.
fig. 9) in (+3,+1) a length of 3 units is to be measured along
XOX ′ in the positive direction, that is from O towards X,
and a length +1 measured along Y OY ′ in the positive direc-
tion, that is from O towards Y . Similarly in (−3,+1) the
length of 3 units is to be measured from O towards X ′, and
of 1 unit from towards Y . Also in (−3,−1) the two lengths
are to be measured along OX ′ and OY ′ respectively, and in
(+3,−1) along OX and OY ′ respectively. Let us for the mo-
ment call such a pair of numbers an “ordered couple.” Then,
from the two numbers 1 and 3, eight ordered couples can be
generated, namely

(+1,+3), (−1,+3), (−1,−3), (+1,−3),

(+3,+1), (−3,+1), (−3,−1), (+3,−1).

Each of these eight “ordered couples” directs a process of
measurement along XOX ′ and Y OY ′ which is different from
that directed by any of the others.

The processes of measurement represented by the last
four ordered couples, mentioned above, are given pictori-



INTRODUCTION TO MATHEMATICS 73

ally in the figure. The lengths OM and ON together corre-
spond to (+3,+1), the lengths OM ′ and ON together cor-
respond to (−3,+1), OM ′ and ON ′ together to (−3,−1),
and OM and ON ′ together to (+3,−1). But by complet-
ing the various rectangles, it is easy to see that the point P
completely determines and is determined by the ordered cou-
ple (+3,+1), the point P ′ by (−3,+1), the point P ′′ by

X ′ X

Y ′

Y

O
M

M ′

N

N ′

+1

−1

PP ′

P ′′ P ′′′

+3−3

Fig. 9.

(−3,−1), and the point P ′′′ by (+3,−1). More generally
in the previous figure (8), the point P corresponds to the
ordered couple (x, y), where x and y in the figure are both
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assumed to be positive, the point P ′ corresponds to (x′, y),
where x′ in the figure is assumed to be negative, P ′′ to (x′y′),
and P ′′′ to (x, y′). Thus an ordered couple (x, y), where
x and y are any positive or negative numbers, and the cor-
responding point reciprocally determine each other. It is
convenient to introduce some names at this juncture. In the
ordered couple (x, y) the first number x is called the “ab-
scissa” of the corresponding point, and the second number y
is called the “ordinate” of the point, and the two numbers
together are called the “coordinates” of the point. The idea
of determining the position of a point by its “coordinates”
was by no means new when the theory of “imaginaries” was
being formed. It was due to Descartes, the great French
mathematician and philosopher, and appears in his Discours
published at Leyden in 1637 a.d. The idea of the ordered
couple as a thing on its own account is of later growth and
is the outcome of the efforts to interpret imaginaries in the
most abstract way possible.

It may be noticed as a further illustration of this idea of
the ordered couple, that the point M in fig. 9 is the couple
(+3, 0), the point N is the couple (0,+1), the point M ′ the
couple (−3, 0), the point N ′ the couple (0,−1), the point O
the couple (0, 0).

Another way of representing the ordered couple (x, y) is
to think of it as representing the dotted line OP (cf. fig. 8),
rather than the point P . Thus the ordered couple represents
a line drawn from an “origin,” O, of a certain length and in a
certain direction. The line OP may be called the vector line
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from O to P , or the step from O to P . We see, therefore,
that we have in this chapter only extended the interpretation
which we gave formerly of the positive and negative numbers.
This method of representation by vectors is very useful when
we consider the meaning to be assigned to the operations of
the addition and multiplication of ordered couples.

We will now go on to this question, and ask what meaning
we shall find it convenient to assign to the addition of the
two ordered couples (x, y) and (x′, y′). The interpretation
must, (a) make the result of addition to be another
ordered couple, (b) make the operation commutative so that
(x, y) + (x′, y′) = (x′, y′) + (x, y), (c) make the operation
associative so that

{(x, y) + (x′, y′)}+ (u, v) = (x, y) + {(x′, y′) + (u, v)},
(d) make the result of subtraction unique, so that when we
seek to determine the unknown ordered couple (x, y) so as
to satisfy the equation

(x, y) + (a, b) = (c, d),

there is one and only one answer which we can represent by

(x, y) = (c, d)− (a, b).

All these requisites are satisfied by taking (x, y) + (x′, y′) to
mean the ordered couple (x + x′, y + y′). Accordingly by
definition we put

(x, y) + (x′, y′) = (x+ x′, y + y′).



IMAGINARY NUMBERS 76

Notice that here we have adopted the mathematical habit
of using the same symbol + in different senses. The + on
the left-hand side of the equation has the new meaning of +
which we are just defining; while the two +’s on the right-
hand side have the meaning of the addition of positive and
negative numbers (operations) which was defined in the last
chapter. No practical confusion arises from this double use.

As examples of addition we have

(+3,+1) + (+2,+6) = (+5,+7),

(+3,−1) + (−2,−6) = (+1,−7),

(+3,+1) + (−3,−1) = (0, 0).

The meaning of subtraction is now settled for us. We
find that

(x, y)− (u, v) = (x− u, y − v).

Thus
(+3,+2)− (+1,+1) = (+2,+1),

and
(+1,−2)− (+2,−4) = (−1,+2),

and
(−1,−2)− (+2,+3) = (−3,−5).

It is easy to see that

(x, y)− (u, v) = (x, y) + (−u,−v).

Also
(x, y)− (x, y) = (0, 0).
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Hence (0, 0) is to be looked on as the zero ordered couple.
For example

(x, y) + (0, 0) = (x, y).

The pictorial representation of the addition of ordered
couples is surprisingly easy.

X ′ X

Y ′

Y

O MM1 M ′

P

Q

R

S

Fig. 10.

Let OP represent (x, y) so that OM = x and PM = y;
let OQ represent (x1, y1) so that OM1 = x1 and QM1 = y1.
Complete the parallelogram OPRQ by the dotted lines
PR and QR, then the diagonal OR is the ordered couple
(x+x1, y+y1). For draw PS parallel to OX; then evidently
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the triangles OQM1 and PRS are in all respects equal.
Hence MM ′ = PS = x1, and RS = QM1 and therefore

OM ′ = OM +MM ′ = x+ x1,

RM ′ = SM ′ +RS = y + y1.

Thus OR represents the ordered couple as required. This
figure can also be drawn with OP and OQ in other quad-
rants.

It is at once obvious that we have here come back to
the parallelogram law, which was mentioned in Chapter VI.,
on the laws of motion, as applying to velocities and forces.
It will be remembered that, if OP and OQ represent two
velocities, a particle is said to be moving with a velocity
equal to the two velocities added together if it be moving
with the velocity OR. In other words OR is said to be the
resultant of the two velocities OP and OQ. Again forces
acting at a point of a body can be represented by lines just
as velocities can be; and the same parallelogram law holds,
namely, that the resultant of the two forces OP and OQ is
the force represented by the diagonal OR. It follows that
we can look on an ordered couple as representing a velocity
or a force, and the rule which we have just given for the
addition of ordered couples then represents the fundamental
laws of mechanics for the addition of forces and velocities.
One of the most fascinating characteristics of mathematics is
the surprising way in which the ideas and results of different
parts of the subject dovetail into each other. During the
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discussions of this and the previous chapter we have been
guided merely by the most abstract of pure mathematical
considerations; and yet at the end of them we have been led
back to the most fundamental of all the laws of nature, laws
which have to be in the mind of every engineer as he designs
an engine, and of every naval architect as he calculates the
stability of a ship. It is no paradox to say that in our most
theoretical moods we may be nearest to our most practical
applications.



CHAPTER VIII

IMAGINARY NUMBERS (Continued)

The definition of the multiplication of ordered couples is
guided by exactly the same considerations as is that of their
addition. The interpretation of multiplication must be such
that

(α) the result is another ordered couple,
(β) the operation is commutative, so that

(x, y)× (x′, y′) = (x′, y′)× (x, y),

(γ) the operation is associative, so that

{(x, y)× (x′, y′)} × (u, v) = (x, y)× {(x′, y′)× (u, v)},

(δ) must make the result of division unique [with an ex-
ception for the case of the zero couple (0, 0)], so that when we
seek to determine the unknown couple (x, y) so as to satisfy
the equation

(x, y)× (a, b) = (c, d),

there is one and only one answer, which we can represent by

(x, y) = (c, d)÷ (a, b), or by (x, y) =
(c, d)

(a, b)
.

(ε) Furthermore the law involving both addition and mul-
tiplication, called the distributive law, must be satisfied,
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namely

(x, y)× {(a, b) + (c, d)}
= {(x, y)× (a, b)}+ {(x, y)× (c, d)}.

All these conditions (α), (β), (γ), (δ), (ε) can be satisfied
by an interpretation which, though it looks complicated at
first, is capable of a simple geometrical interpretation.

By definition we put

(A) (x, y)× (x′, y′) = {(xx′ − yy′), (xy′ + x′y)}.

This is the definition of the meaning of the symbol ×
when it is written between two ordered couples. It follows
evidently from this definition that the result of multiplication
is another ordered couple, and that the value of the right-
hand side of equation (A) is not altered by simultaneously
interchanging x with x′, and y with y′. Hence conditions (α)
and (β) are evidently satisfied. The proof of the satisfac-
tion of (γ), (δ), (ε) is equally easy when we have given the
geometrical interpretation, which we will proceed to do in a
moment. But before doing this it will be interesting to pause
and see whether we have attained the object for which all
this elaboration was initiated.

We came across equations of the form x2 = −3, to which
no solutions could be assigned in terms of positive and neg-
ative real numbers. We then found that all our difficulties
would vanish if we could interpret the equation x2 = −1, i.e.,
if we could so define

√
(−1) that

√
(−1)×

√
(−1) = −1.
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Now let us consider the three special ordered couples∗

(0, 0), (1, 0), and (0, 1).
We have already proved that

(x, y) + (0, 0) = (x, y).

Furthermore we now have

(x, y)× (0, 0) = (0, 0).

Hence both for addition and for multiplication the couple
(0, 0) plays the part of zero in elementary arithmetic and
algebra; compare the above equations with x + 0 = x, and
x× 0 = 0.

Again consider (1, 0): this plays the part of 1 in elemen-
tary arithmetic and algebra. In these elementary sciences
the special characteristic of 1 is that x×1 = x, for all values
of x. Now by our law of multiplication

(x, y)× (1, 0) = {(x− 0), (y + 0)} = (x, y).

Thus (1, 0) is the unit couple.
Finally consider (0, 1): this will interpret for us the sym-

bol
√

(−1). The symbol must therefore possess the charac-

teristic property that
√

(−1) ×
√

(−1) = −1. Now by the
law of multiplication for ordered couples

(0, 1)× (0, 1) = {(0− 1), (0 + 0)} = (−1, 0).

∗For the future we follow the custom of omitting the + sign wher-
ever possible, thus (1, 0) stands for (+1, 0) and (0, 1) for (0,+1).
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But (1, 0) is the unit couple, and (−1, 0) is the negative
unit couple; so that (0, 1) has the desired property. There
are, however, two roots of −1 to be provided for, namely
±
√

(−1). Consider (0,−1); here again remembering that
(−1)2 = 1, we find, (0,−1)× (0,−1) = (−1, 0).

Thus (0,−1) is the other square root of −1. Accord-
ingly the ordered couples (0, 1) and (0,−1) are the interpre-
tations of ±

√
(−1) in terms of ordered couples. But which

corresponds to which? Does (0, 1) correspond to +
√

(−1)

and (0,−1) to −
√

(−1), or (0, 1) to −
√

(−1), and (0,−1)

to +
√

(−1)? The answer is that it is perfectly indifferent
which symbolism we adopt.

The ordered couples can be divided into three types,
(i) the “complex imaginary” type (x, y), in which neither
x nor y is zero; (ii) the “real” type (x, 0); (iii) the “pure
imaginary” type (0, y). Let us consider the relations of these
types to each other. First multiply together the “complex
imaginary” couple (x, y) and the “real” couple (a, 0), we find

(a, 0)× (x, y) = (ax, ay).

Thus the effect is merely to multiply each term of the
couple (x, y) by the positive or negative real number a.

Secondly, multiply together the “complex imaginary”
couple (x, y) and the “pure imaginary” couple (0, b), we find

(0, b)× (x, y) = (−by, bx).

Here the effect is more complicated, and is best compre-
hended in the geometrical interpretation to which we proceed
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after noting three yet more special cases.
Thirdly, we multiply the “real” couple (a, 0) by the imag-

inary (0, b) and obtain

(a, 0)× (0, b) = (0, ab).

Fourthly, we multiply the two “real” couples (a, 0) and
(a′, 0) and obtain

(a, 0)× (a′, 0) = (aa′, 0).

Fifthly, we multiply the two “imaginary couples” (0, b)
and (0, b′) and obtain

(0, b)× (0, b′) = (−bb′, 0).

We now turn to the geometrical interpretation, beginning
first with some special cases. Take the couples (1, 3) and
(2, 0) and consider the equation

(2, 0)× (1, 3) = (2, 6).

In the diagram (fig. 11) the vector OP represents (1, 3),
and the vector ON represents (2, 0), and the vector OQ rep-
resents (2, 6). Thus the product (2, 0) × (1, 3) is found geo-
metrically by taking the length of the vector OQ to be the
product of the lengths of the vectors OP and ON , and (in
this case) by producing OP to Q to be of the required length.
Again, consider the product (0, 2)× (1, 3), we have

(0, 2)× (1, 3) = (−6, 2).
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Fig. 11.

The vector ON1, corresponds to (0, 2) and the vector OR
to (−6, 2). Thus OR which represents the new product is at
right angles to OQ and of the same length. Notice that we
have the same law regulating the length of OQ as in the
previous case, namely, that its length is the product of the
lengths of the two vectors which are multiplied together; but
now that we have ON1 along the “ordinate” axis OY , instead
of ON along the “abscissa” axis OX, the direction of OP
has been turned through a right-angle.

Hitherto in these examples of multiplication we have
looked on the vector OP as modified by the vectors ON
and ON1. We shall get a clue to the general law for the di-
rection by inverting the way of thought, and by thinking of
the vectors ON and ON1 as modified by the vector OP . The
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law for the length remains unaffected; the resultant length
is the length of the product of the two vectors. The new
direction for the enlarged ON (i.e. OQ) is found by rotating
it in the (anti-clockwise) direction of rotation from OX to-
wards OY through an angle equal to the angle XOP : it is an
accident of this particular case that this rotation makes OQ
lie along the line OP . Again consider the product of ON1

and OP ; the new direction for the enlarged ON1 (i.e. OR)
is found by rotating ON in the anti-clockwise direction of
rotation through an angle equal to the angle XOP , namely,
the angle N1OR is equal to the angle XOP .

The general rule for the geometrical representation of
multiplication can now be enunciated thus:

X

Y

O

P

Q

R

Fig. 12.
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The product of the two vectors OP and OQ is a vec-
tor OR, whose length is the product of the lengths of OP
and OQ and whose direction OR is such that the angle XOR
is equal to the sum of the angles XOP and XOQ.

Hence we can conceive the vector OP as making the vec-
tor OQ rotate through an angle XOP (i.e. the angle QOR =
the angle XOP ), or the vector OQ as making the vec-
torOP rotate through the angleXOQ (i.e.the angle POR =
the angle XOQ).

We do not prove this general law, as we should thereby
be led into more technical processes of mathematics than
falls within the design of this book. But now we can im-
mediately see that the associative law [numbered (γ) above]
for multiplication is satisfied. Consider first the length of
the resultant vector; this is got by the ordinary process of
multiplication for real numbers; and thus the associative law
holds for it.

Again, the direction of the resultant vector is got by the
mere addition of angles, and the associative law holds for
this process also.

So much for multiplication. We have now rapidly indi-
cated, by considering addition and multiplication, how an
algebra or “calculus” of vectors in one plane can be con-
structed, which is such that any two vectors in the plane can
be added, or subtracted, and can be multiplied, or divided
one by the other.

We have not considered the technical details of all these
processes because it would lead us too far into mathematical



IMAGINARY NUMBERS 88

details; but we have shown the general mode of procedure.
When we are interpreting our algebraic symbols in this way,
we are said to be employing “imaginary quantities” or “com-
plex quantities.” These terms are mere details, and we have
far too much to think about to stop to enquire whether they
are or are not very happily chosen.

The nett result of our investigations is that any equations
like x+3 = 2 or (x+3)2 = −2 can now always be interpreted
into terms of vectors, and solutions found for them. In seek-
ing for such interpretations it is well to note that 3 becomes
(3, 0), and −2 becomes (−2, 0), and x becomes the “un-
known” couple (u, v): so the two equations become respec-
tively (u, v) + (3, 0) = (2, 0), and {(u, v) + (3, 0)}2 = (−2, 0).

We have now completely solved the initial difficulties
which caught our eye as soon as we considered even the el-
ements of algebra. The science as it emerges from the so-
lution is much more complex in ideas than that with which
we started. We have, in fact, created a new and entirely
different science, which will serve all the purposes for which
the old science was invented and many more in addition.
But, before we can congratulate ourselves on this result to
our labours, we must allay a suspicion which ought by this
time to have arisen in the mind of the student. The question
which the reader ought to be asking himself is: Where is all
this invention of new interpretations going to end? It is true
that we have succeeded in interpreting algebra so as always
to be able to solve a quadratic equation like x2− 2x+ 4 = 0;
but there are an endless number of other equations, for ex-
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ample, x3 − 2x+ 4 = 0, x4 + x3 + 2 = 0, and so on without
limit. Have we got to make a new science whenever a new
equation appears?

Now, if this were the case, the whole of our preceding
investigations, though to some minds they might be amusing,
would in truth be of very trifling importance. But the great
fact, which has made modern analysis possible, is that, by
the aid of this calculus of vectors, every formula which arises
can receive its proper interpretation; and the “unknown”
quantity in every equation can be shown to indicate some
vector. Thus the science is now complete in itself as far as
its fundamental ideas are concerned. It was receiving its
final form about the same time as when the steam engine
was being perfected, and will remain a great and powerful
weapon for the achievement of the victory of thought over
things when curious specimens of that machine repose in
museums in company with the helmets and breastplates of
a slightly earlier epoch.



CHAPTER IX

COORDINATE GEOMETRY

The methods and ideas of coordinate geometry have al-
ready been employed in the previous chapters. It is now time
for us to consider them more closely for their own sake; and
in doing so we shall strengthen our hold on other ideas to
which we have attained. In the present and succeeding chap-
ters we will go back to the idea of the positive and negative
real numbers and will ignore the imaginaries which were in-
troduced in the last two chapters.

We have been perpetually using the idea that, by tak-
ing two axes, XOX ′ and Y OY ′, in a plane, any point P in
that plane can be determined in position by a pair of posi-
tive or negative numbers x and y, where (cf. fig. 13) x is the
length OM and y is the length PM . This conception, simple
as it looks, is the main idea of the great subject of coordinate
geometry. Its discovery marks a momentous epoch in the his-
tory of mathematical thought. It is due (as has been already
said) to the philosopher Descartes, and occurred to him as
an important mathematical method one morning as he lay
in bed. Philosophers, when they have possessed a thorough
knowledge of mathematics, have been among those who have
enriched the science with some of its best ideas. On the
other hand it must be said that, with hardly an exception,
all the remarks on mathematics made by those philosophers
who have possessed but a slight or hasty and late-acquired
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knowledge of it are entirely worthless, being either trivial or
wrong. The fact is a curious one; since the ultimate ideas of
mathematics seem, after all, to be very simple, almost child-
ishly so, and to lie well within the province of philosophical
thought. Probably their very simplicity is the cause of error;
we are not used to think about such simple abstract things,
and a long training is necessary to secure even a partial im-
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munity from error as soon as we diverge from the beaten
track of thought.

The discovery of coordinate geometry, and also that of
projective geometry about the same time, illustrate another
fact which is being continually verified in the history of
knowledge, namely, that some of the greatest discoveries
are to be made among the most well-known topics. By the
time that the seventeenth century had arrived, geometry
had already been studied for over two thousand years, even
if we date its rise with the Greeks. Euclid, taught in the
University of Alexandria, being born about 330 b.c.; and
he only systematized and extended the work of a long series
of predecessors, some of them men of genius. After him
generation after generation of mathematicians laboured at
the improvement of the subject. Nor did the subject suf-
fer from that fatal bar to progress, namely, that its study
was confined to a narrow group of men of similar origin and
outlook—quite the contrary was the case; by the seventeenth
century it had passed through the minds of Egyptians and
Greeks, of Arabs and of Germans. And yet, after all this
labour devoted to it through so many ages by such diverse
minds its most important secrets were yet to be discovered.

No one can have studied even the elements of elementary
geometry without feeling the lack of some guiding method.
Every proposition has to be proved by a fresh display of in-
genuity; and a science for which this is true lacks the great
requisite of scientific thought, namely, method. Now the es-
pecial point of coordinate geometry is that for the first time it
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introduced method. The remote deductions of a mathemat-
ical science are not of primary theoretical importance. The
science has not been perfected, until it consists in essence of
the exhibition of great allied methods by which information,
on any desired topic which falls within its scope, can easily
be obtained. The growth of a science is not primarily in bulk,
but in ideas; and the more the ideas grow, the fewer are the
deductions which it is worth while to write down. Unfortu-
nately, mathematics is always encumbered by the repetition
in text-books of numberless subsidiary propositions, whose
importance has been lost by their absorption into the role
of particular cases of more general truths—and, as we have
already insisted, generality is the soul of mathematics.

Again, coordinate geometry illustrates another feature
of mathematics which has already been pointed out, namely,
that mathematical sciences as they develop dovetail into each
other, and share the same ideas in common. It is not too
much to say that the various branches of mathematics un-
dergo a perpetual process of generalization, and that as they
become generalized, they coalesce. Here again the reason
springs from the very nature of the science, its generality,
that is to say, from the fact that the science deals with the
general truths which apply to all things in virtue of their
very existence as things. In this connection the interest of
coordinate geometry lies in the fact that it relates together
geometry, which started as the science of space, and algebra,
which has its origin in the science of number.

Let us now recall the main ideas of the two sciences, and
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then see how they are related by Descartes’ method of coor-
dinates. Take algebra in the first place. We will not trouble
ourselves about the imaginaries and will think merely of the
real numbers with positive or negative signs. The fundamen-
tal idea is that of any number, the variable number, which
is denoted by a letter and not by any definite numeral. We
then proceed to the consideration of correlations between
variables. For example, if x and y are two variables, we may
conceive them as correlated by the equations x + y = 1,
or by x − y = 1, or in any one of an indefinite number of
other ways. This at once leads to the application of the idea
of algebraic form. We think, in fact, of any correlation of
some interesting type, thus rising from the initial conception
of variable numbers to the secondary conception of variable
correlations of numbers. Thus we generalize the correlation
x + y = 1, into the correlation ax + by = c. Here a and b
and c, being letters, stand for any numbers and are in fact
themselves variables. But they are the variables which de-
termine the variable correlation; and the correlation, when
determined, correlates the variable numbers x and y. Vari-
ables, like a, b, and c above, which are used to determine
the correlation are called “constants,” or parameters. The
use of the term “constant” in this connection for what is
really a variable may seem at first sight to be odd; but it
is really very natural. For the mathematical investigation is
concerned with the relation between the variables x and y,
after a, b, c are supposed to have been determined. So in a
sense, relatively to x and y, the “constants” a, b, and c are
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constants. Thus ax+ by = c stands for the general example
of a certain algebraic form, that is, for a variable correlation
belonging to a certain class.

Again we generalize x2 + y2 = 1 into ax2 + by2 = c, or
still further into ax2 + 2hxy + by2 = c, or, still further, into
ax2 + 2hxy + by2 + 2gx+ 2fy = c.

Here again we are led to variable correlations which are
indicated by their various algebraic forms.

Now let us turn to geometry. The name of the science
at once recalls to our minds the thought of figures and di-
agrams exhibiting triangles and rectangles and squares and
circles, all in special relations to each other. The study of
the simple properties of these figures is the subject matter
of elementary geometry, as it is rightly presented to the be-
ginner. Yet a moment’s thought will show that this is not
the true conception of the subject. It may be right for a
child to commence his geometrical reasoning on shapes, like
triangles and squares, which he has cut out with scissors.
What, however, is a triangle? It is a figure marked out and
bounded by three bits of three straight lines.

Now the boundary of spaces by bits of lines is a very
complicated idea, and not at all one which gives any hope of
exhibiting the simple general conceptions which should form
the bones of the subject. We want something more simple
and more general. It is this obsession with the wrong initial
ideas—very natural and good ideas for the creation of first
thoughts on the subject—which was the cause of the com-
parative sterility of the study of the science during so many
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centuries. Coordinate geometry, and Descartes its inventor,
must have the credit of disclosing the true simple objects for
geometrical thought.

In the place of a bit of a straight line, let us think of
the whole of a straight line throughout its unending length
in both directions. This is the sort of general idea from
which to start our geometrical investigations. The Greeks
never seem to have found any use for this conception which
is now fundamental in all modern geometrical thought. Eu-
clid always contemplates a straight line as drawn between
two definite points, and is very careful to mention when it
is to be produced beyond this segment. He never thinks of
the line as an entity given once for all as a whole. This care-
ful definition and limitation, so as to exclude an infinity not
immediately apparent to the senses, was very characteristic
of the Greeks in all their many activities. It is enshrined
in the difference between Greek architecture and Gothic ar-
chitecture, and between the Greek religion and the modern
religion. The spire on a Gothic cathedral and the importance
of the unbounded straight line in modern geometry are both
emblematic of the transformation of the modern world.

The straight line, considered as a whole, is accordingly
the root idea from which modern geometry starts. But then
other sorts of lines occur to us, and we arrive at the concep-
tion of the complete curve which at every point of it exhibits
some uniform characteristic, just as the straight line exhibits
at all points the characteristic of straightness. For example,
there is the circle which at all points exhibits the character-
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istic of being at a given distance from its centre, and again
there is the ellipse, which is an oval curve, such that the sum
of the two distances of any point on it from two fixed points,
called its foci, is constant for all points on the curve. It is
evident that a circle is merely a particular case of an ellipse
when the two foci are superposed in the same point; for then
the sum of the two distances is merely twice the radius of the
circle. The ancients knew the properties of the ellipse and
the circle and, of course, considered them as wholes. For
example, Euclid never starts with mere segments (i.e., bits)
of circles, which are then prolonged. He always considers the
whole circle as described. It is unfortunate that the circle is
not the true fundamental line in geometry, so that his de-
fective consideration of the straight line might have been of
less consequence.

This general idea of a curve which at any point of it ex-
hibits some uniform property is expressed in geometry by the
term “locus.” A locus is the curve (or surface, if we do not
confine ourselves to a plane) formed by points, all of which
possess some given property. To every property in relation
to each other which points can have, there corresponds some
locus, which consists of all the points possessing the prop-
erty. In investigating the properties of a locus considered as
a whole, we consider any point or points on the locus. Thus
in geometry we again meet with the fundamental idea of the
variable. Furthermore, in classifying loci under such head-
ings as straight lines, circles, ellipses, etc., we again find the
idea of form.
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Accordingly, as in algebra we are concerned with vari-
able numbers, correlations between variable numbers, and
the classification of correlations into types by the idea of al-
gebraic form; so in geometry we are concerned with variable
points, variable points satisfying some condition so as form
to a locus, and the classification of loci into types by the idea
of conditions of the same form.

Now, the essence of coordinate geometry is the identifica-
tion of the algebraic correlation with the geometrical locus.
The point on a plane is represented in algebra by its two co-
ordinates, x and y, and the condition satisfied by any point
on the locus is represented by the corresponding correlation
between x and y. Finally to correlations expressible in some
general algebraic form, such as ax+by = c, there correspond
loci of some general type, whose geometrical conditions are
all of the same form. We have thus arrived at a position
where we can effect a complete interchange in ideas and re-
sults between the two sciences. Each science throws light
on the other, and itself gains immeasurably in power. It
is impossible not to feel stirred at the thought of the emo-
tions of men at certain historic moments of adventure and
discovery—Columbus when he first saw the Western shore,
Pizarro when he stared at the Pacific Ocean, Franklin when
the electric spark came from the string of his kite, Galileo
when he first turned his telescope to the heavens. Such mo-
ments are also granted to students in the abstract regions
of thought, and high among them must be placed the morn-
ing when Descartes lay in bed and invented the method of
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coordinate geometry.
When one has once grasped the idea of coordinate ge-

ometry, the immediate question which starts to the mind
is, What sort of loci correspond to the well-known alge-
braic forms? For example, the simplest among the general
types of algebraic forms is ax + by = c. The sort of locus
which corresponds to this is a straight line, and conversely
to every straight line there corresponds an equation of this
form. It is fortunate that the simplest among the geometrical
loci should correspond to the simplest among the algebraic
forms. Indeed, it is this general correspondence of geometri-
cal and algebraic simplicity which gives to the whole subject
its power. It springs from the fact that the connection be-
tween geometry and algebra is not casual and artificial, but
deep-seated and essential. The equation which corresponds
to a locus is called the equation “of” (or “to”) the locus.
Some examples of equations of straight lines will illustrate
the subject.

Consider y − x = 0; here the a, b, and c, of the general
form have been replaced by −1, 1, and 0 respectively. This
line passes through the “origin,” O, in the diagram and bi-
sects the angle XOY . It is the line L′OL of the diagram.
The fact that it passes through the origin, O, is easily seen
by observing that the equation is satisfied by putting x = 0
and y = 0 simultaneously, but 0 and 0 are the coordinates
of O. In fact it is easy to generalize and to see by the same
method that the equation of any line through the origin is
of the form ax+ by = 0. The locus of the equation y+x = 0
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also passes through the origin and bisects the angle X ′OY :
it is the line L1OL

′
1 of the diagram.

Consider y − x = 1: the corresponding locus does not
pass through the origin. We therefore seek where it cuts the
axes. It must cut the axis of x at some point of coordinates
x and 0. But putting y = 0 in the equation, we get x = −1;
so the coordinates of this point (A) are 1 and 0. Similarly
the point (B) where the line cuts the axis OY are 0 and 1.
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The locus is the line AB in the figure and is parallel to LOL′.
Similarly y+ x = 1 is the equation of line A1B of the figure;
and the locus is parallel to L1OL

′
1. It is easy to prove the

general theorem that two lines represented by equations of
the forms ax+ by = 0 and ax+ by = c are parallel.

The group of loci which we next come upon are suffi-
ciently important to deserve a chapter to themselves. But
before going on to them we will dwell a little longer on the
main ideas of the subject.

The position of any point P is determined by arbitrar-
ily choosing an origin, O, two axes, OX and OY , at right-
angles, and then by noting its coordinates x and y, i.e. OM
and PM (cf. fig. 13). Also, as we have seen in the last chap-
ter, P can be determined by the “vector” OP , where the
idea of the vector includes a determinate direction as well as
a determinate length. From an abstract mathematical point
of view the idea of an arbitrary origin may appear artifi-
cial and clumsy, and similarly for the arbitrarily drawn axes,
OX and OY . But in relation to the application of mathe-
matics to the event of the Universe we are here symbolizing
with direct simplicity the most fundamental fact respecting
the outlook on the world afforded to us by our senses. We
each of us refer our sensible perceptions of things to an ori-
gin which we call “here”: our location in a particular part of
space round which we group the whole Universe is the essen-
tial fact of our bodily existence. We can imagine beings who
observe all phenomena in all space with an equal eye, unbi-
assed in favour of any part. With us it is otherwise, a cat at
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our feet claims more attention than an earthquake at Cape
Horn, or than the destruction of a world in the Milky Way.
It is true that in making a common stock of our knowledge
with our fellowmen, we have to waive something of the strict
egoism of our own individual “here.” We substitute “nearly
here” for “here”; thus we measure miles from the town hall
of the nearest town, or from the capital of the country. In
measuring the earth, men of science will put the origin at the
earth’s centre; astronomers even rise to the extreme altruism
of putting their origin inside the sun. But, far as this last
origin may be, and even if we go further to some convenient
point amid the nearer fixed stars, yet, compared to the im-
measurable infinities of space, it remains true that our first
procedure in exploring the Universe is to fix upon an origin
“nearly here.”

Again the relation of the coordinates OM and MP (i.e.
x and y) to the vector OP is an instance of the famous paral-
lelogram law, as can easily be seen (cf. fig. 8) by completing
the parallelogram OMPN . The idea of the “vector” OP ,
that is, of a directed magnitude, is the root-idea of physi-
cal science. Any moving body has a certain magnitude of
velocity in a certain direction, that is to say, its velocity is
a directed magnitude, a vector. Again a force has a cer-
tain magnitude and has a definite direction. Thus, when
in analytical geometry the ideas of the “origin,” of “coordi-
nates,” and of “vectors” are introduced, we are studying the
abstract conceptions which correspond to the fundamental
facts of the physical world.



CHAPTER X

CONIC SECTIONS

When the Greek geometers had exhausted, as they
thought, the more obvious and interesting properties of fig-
ures made up of straight lines and circles, they turned to
the study of other curves; and, with their almost infallible
instinct for hitting upon things worth thinking about, they
chiefly devoted themselves to conic sections, that is, to the
curves in which planes would cut the surfaces of circular
cones. The man who must have the credit of inventing the
study is Menaechmus (born 375 b.c. and died 325 b.c.); he
was a pupil of Plato and one of the tutors of Alexander the
Great. Alexander, by the by, is a conspicuous example of
the advantages of good tuition, for another of his tutors was
the philosopher Aristotle. We may suspect that Alexander
found Menaechmus rather a dull teacher, for it is related
that he asked for the proofs to be made shorter. It was to
this request that Menaechmus replied: “In the country there
are private and even royal roads, but in geometry there is
only one road for all.” This reply no doubt was true enough
in the sense in which it would have been immediately un-
derstood by Alexander. But if Menaechmus thought that
his proofs could not be shortened, he was grievously mis-
taken; and most modern mathematicians would be horribly
bored, if they were compelled to study the Greek proofs of
the properties of conic sections. Nothing illustrates better
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the gain in power which is obtained by the introduction of
relevant ideas into a science than to observe the progres-
sive shortening of proofs which accompanies the growth of
richness in idea. There is a certain type of mathematician
who is always rather impatient at delaying over the ideas of
a subject: he is anxious at once to get on to the proofs of
“important” problems. The history of the science is entirely
against him. There are royal roads in science; but those who
first tread them are men of genius and not kings.

The way in which conic sections first presented them-
selves to mathematicians was as follows: think of a cone (cf.
fig. 15), whose vertex (or point) is V , standing on a circular
base STU . For example, a conical shade to an electric light
is often an example of such a surface. Now let the “gen-
erating” lines which pass through V and lie on the surface
be all produced backwards; the result is a double cone, and
PQR is another circular cross section on the opposite side
of V to the cross section STU . The axis of the cone CV C ′

passes through all the centres of these circles and is perpen-
dicular to their planes, which are parallel to each other. In
the diagram the parts of the curves which are supposed to
lie behind the plane of the paper are dotted lines, and the
parts on the plane or in front of it are continuous lines. Now
suppose this double cone is cut by a plane not perpendicular
to the axis CV C ′, or at least not necessarily perpendicular
to it. Then three cases can arise:—

(1) The plane may cut the cone in a closed oval curve,
such as ABA′B′ which lies entirely on one of the two half-



INTRODUCTION TO MATHEMATICS 105

cones. In this case the plane will not meet the other half-cone
at all. Such a curve is called an ellipse; it is an oval curve. A
particular case of such a section of the cone is when the plane
is perpendicular to the axis CV C ′, then the section, such as
STU or PQR, is a circle. Hence a circle is a particular case
of the ellipse.

(2) The plane may be parallelled to a tangent plane
touching the cone along one of its “generating” lines as for
example the plane of the curve D1A1D

′
1 in the diagram is

parallel to the tangent plane touching the cone along the
generating line V S; the curve is still confined to one of the
half-cones, but it is now not a closed oval curve, it goes
on endlessly as long as the generating lines of the half-cone
are produced away from the vertex. Such a conic section is
called parabola.

(3) The plane may cut both the half-cones, so that
the complete curve consists of two detached portions, or
“branches” as they are called, this case is illustrated by the
two branches G2A2G

′
2 and L2A

′
2L
′
2 which together make up

the curve. Neither branch is closed, each of them spreading
out endlessly as the two half-cones are prolonged away from
the vertex. Such a conic section is called a hyperbola.

There are accordingly three types of conic sections,
namely, ellipses, parabolas, and hyperbolas. It is easy to
see that, in a sense, parabolas are limiting cases lying be-
tween ellipses and hyperbolas. They form a more special
sort and have to satisfy a more particular condition. These
three names are apparently due to Apollonius of Perga
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(born about 260 b.c., and died about 200 b.c.), who wrote
a systematic treatise on conic sections which remained the
standard work till the sixteenth century.
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It must at once be apparent how awkward and difficult
the investigation of the properties of these curves must have
been to the Greek geometers. The curves are plane curves,
and yet their investigation involves the drawing in perspec-
tive of a solid figure. Thus in the diagram given above we
have practically drawn no subsidiary lines and yet the fig-
ure is sufficiently complicated. The curves are plane curves,
and it seems obvious that we should be able to define them
without going beyond the plane into a solid figure. At the

XX ′

NN ′

AA′

B

B′

P

C SMS ′

Fig. 16.

same time, just as in the “solid” definition there is one uni-
form method of definition—namely, the section of a cone by
a plane—which yields three cases, so in any “plane” defini-
tion there also should be one uniform method of procedure
which falls into three cases. Their shapes when drawn on
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their planes are those of the curved lines in the three fig-
ures 16, 17, and 18. The points A and A′ in the figures
are called the vertices and the line AA′ the major axis. It
will be noted that a parabola (cf. fig. 17) has only one ver-
tex. Apollonius proved∗ that the ratio of PM2 to AM ·MA′(

i.e.
PM2

AM ·MA′

)
remains constant both for the ellipse and

the hyperbola (figs. 16 and 18), and that the ratio of PM2

to AM is constant for the parabola of fig. 17; and he bases
most of his work on this fact. We are evidently advancing
towards the desired uniform definition which does not go out
of the plane; but have not yet quite attained to uniformity.

∗Cf. Ball, loc. cit., for this account of Apollonius and Pappus.
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In the diagrams 16 and 18, two points, S and S ′, will be
seen marked, and in diagram 17 one point, S. These are the
foci of the curves, and are points of the greatest importance.
Apollonius knew that for an ellipse the sum of SP and S ′P
(i.e. SP + S ′P ) is constant as P moves on the curve, and
is equal to AA′. Similarly for a hyperbola the difference
S ′P − SP is constant, and equal to AA′ when P is on one
branch, and the difference SP ′ − S ′P ′ is constant and equal
to AA′ when P ′ is on the other branch. But no corresponding
point seemed to exist for the parabola.
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Finally 500 years later the last great Greek geometer,
Pappus of Alexandria, discovered the final secret which com-
pleted this line of thought. In the diagrams 16 and 18 will be
seen two lines, XN and X ′N ′, and in diagram 17 the single
line, XN . These are the directrices of the curves, two each
for the ellipse and the hyperbola, and one for the parabola.
Each directrix corresponds to its nearer focus. The charac-
teristic property of a focus, S, and its corresponding direc-
trix, XN , for any one of the three types of curve, is that the

ratio SP to PN

(
i.e.

SP

PN

)
is constant, where PN is the

perpendicular on the directrix from P , and P is any point on
the curve. Here we have finally found the desired property
of the curves which does not require us to leave the plane,
and is stated uniformly for all three curves. For ellipses the
ratio∗ is less than 1, for parabolas it is equal to 1, and for
hyperbolas it is greater than 1.

When Pappus had finished his investigations, he must
have felt that, apart from minor extensions, the subject was
practically exhausted; and if he could have foreseen the his-
tory of science for more than a thousand years, it would have
confirmed his belief. Yet in truth the really fruitful ideas in
connection with this branch of mathematics had not yet been
even touched on, and no one had guessed their supremely im-
portant applications in nature. No more impressive warning
can be given to those who would confine knowledge and re-

∗Cf. Note B, p. 207.



INTRODUCTION TO MATHEMATICS 111

search to what is apparently useful, than the reflection that
conic sections were studied for eighteen hundred years merely
as an abstract science, without a thought of any utility other
than to satisfy the craving for knowledge on the part of math-
ematicians, and that then at the end of this long period of
abstract study, they were found to be the necessary key with
which to attain the knowledge of one of the most important
laws of nature.

Meanwhile the entirely distinct study of astronomy had
been going forward. The great Greek astronomer Ptolemy
(died 168 a.d.) published his standard treatise on the sub-
ject in the University of Alexandria, explaining the apparent
motions among the fixed stars of the sun and planets by the
conception of the earth at rest and the sun and the planets
circling round it. During the next thirteen hundred years the
number and the accuracy of the astronomical observations
increased, with the result that the description of the mo-
tions of the planets on Ptolemy’s hypothesis had to be made
more and more complicated. Copernicus (born 1473 a.d.
and died 1543 a.d.) pointed out that the motions of these
heavenly bodies could be explained in a simpler manner if the
sun were supposed to rest, and the earth and planets were
conceived as moving round it. However, he still thought of
these motions as essentially circular, though modified by a
set of small corrections arbitrarily superimposed on the pri-
mary circular motions. So the matter stood when Kepler
was born at Stuttgart in Germany in 1571 a.d. There were
two sciences, that of the geometry of conic sections and that
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of astronomy, both of which had been studied from a remote
antiquity without a suspicion of any connection between the
two. Kepler was an astronomer, but he was also an able
geometer, and on the subject of conic sections had arrived
at ideas in advance of his time. He is only one of many
examples of the falsity of the idea that success in scientific
research demands an exclusive absorption in one narrow line
of study. Novel ideas are more apt to spring from an unusual
assortment of knowledge—not necessarily from vast knowl-
edge, but from a thorough conception of the methods and
ideas of distinct lines of thought. It will be remembered that
Charles Darwin was helped to arrive at his conception of the
law of evolution by reading Malthus’ famous Essay on Pop-
ulation, a work dealing with a different subject—at least, as
it was then thought.

Kepler enunciated three laws of planetary motion, the
first two in 1609, and the third ten years later. They are as
follows:

(1) The orbits of the planets are ellipses, the sun being
in the focus.

(2) As a planet moves in its orbit, the radius vector from
the sun to the planet sweeps out equal areas in equal times.

(3) The squares of the periodic times of the several plan-
ets are proportional to the cubes of their major axes.

These laws proved to be only a stage towards a more
fundamental development of ideas. Newton (born 1642 a.d.
and died 1727 a.d.) conceived the idea of universal gravita-
tion, namely, that any two pieces of matter attract each other
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with a force proportional to the product of their masses and
inversely proportional to the square of their distance from
each other. This sweeping general law, coupled with the
three laws of motion which he put into their final general
shape, proved adequate to explain all astronomical phenom-
ena, including Kepler’s laws, and has formed the basis of
modern physics. Among other things he proved that comets
might move in very elongated ellipses, or in parabolas, or in
hyperbolas, which are nearly parabolas. The comets which
return—such as Halley’s comet—must, of course, move in el-
lipses. But the essential step in the proof of the law of grav-
itation, and even in the suggestion of its initial conception,
was the verification of Kepler’s laws connecting the motions
of the planets with the theory of conic sections.

From the seventeenth century onwards the abstract the-
ory of the curves has shared in the double renaissance of ge-
ometry due to the introduction of coordinate geometry and
of projective geometry. In projective geometry the funda-
mental ideas cluster round the consideration of sets (or pen-
cils, as they are called) of lines passing through a common
point (the vertex of the “pencil”). Now (cf. fig. 19) if A, B,
C, D, be any four fixed points on a conic section and P be a
variable point on the curve, the pencil of lines PA, PB, PC,
and PD, has a special property, known as the constancy of
its cross ratio. It will suffice here to say that cross ratio is
a fundamental idea in projective geometry. For projective
geometry this is really the definition of the curves, or some
analogous property which is really equivalent to it. It will be
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seen how far in the course of ages of study we have drifted
away from the old original idea of the sections of a circular
cone. We know now that the Greeks had got hold of a mi-
nor property of comparatively slight importance; though by
some divine good fortune the curves themselves deserved all
the attention which was paid to them. This unimportance
of the “section” idea is now marked in ordinary mathemati-
cal phraseology by dropping the word from their names. As
often as not, they are now named merely “conics” instead of
“conic sections.”

Finally, we come back to the point at which we left coor-
dinate geometry in the last chapter. We had asked what was
the type of loci corresponding to the general algebraic form
ax + by = c, and had found that it was the class of straight
lines in the plane. We had seen that every straight line pos-
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sesses an equation of this form, and that every equation of
this form corresponds to a straight line. We now wish to go
on to the next general type of algebraic forms. This is evi-
dently to be obtained by introducing terms involving x2 and
xy and y2. Thus the new general form must be written:—

ax2 + 2hxy + by2 + 2gx+ 2fy + c = 0.

What does this represent? The answer is that (when it rep-
resents any locus) it always represents a conic section, and,
furthermore, that the equation of every conic section can
always be put into this shape. The discrimination of the
particular sorts of conics as given by this form of equation
is very easy. It entirely depends upon the consideration of
ab − h2, where a, b, and h, are the “constants” as written
above. If ab−h2 is a positive number, the curve is an ellipse;
if ab − h2 = 0, the curve is a parabola: and if ab − h2 is a
negative number, the curve is a hyperbola.

For example, put a = b = 1, h = g = f = 0, c = −4. We
then get the equation x2 + y2 − 4 = 0. It is easy to prove
that this is the equation of a circle, whose centre is at the
origin, and radius is 2 units of length. Now ab− h2 becomes
1 × 1 − 02, that is, 1, and is therefore positive. Hence the
circle is a particular case of an ellipse, as it ought to be.
Generalising, the equation of any circle can be put into the
form a(x2 + y2) + 2gx+ 2fy+ c = 0. Hence ab−h2 becomes
a2− 0, that is, a2, which is necessarily positive. Accordingly
all circles satisfy the condition for ellipses. The general form
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of the equation of a parabola is

(dx+ ey)2 + 2gx+ 2fy + c = 0,

so that the terms of the second degree, as they are called,
can be written as a perfect square. For squaring out, we get

d2x2 + 2dexy + e2y2 + 2gx+ 2fy + c;

so that by comparison a = d2, h = de, b = e2, and therefore
ab − h2 = d2e2 − (de)2 = 0. Hence the necessary condition
is automatically satisfied. The equation 2xy − 4 = 0, where
a = b = g = f = 0, h = 1, c = −4, represents a hyperbola.
For the condition ab− h2 becomes 0− 12, that is, −1, which
is negative.

The limitation, introduced by saying that, when the
general equation represents any locus, it represents a conic
section, is necessary, because some particular cases of the
general equation represent no real locus. For example
x2 + y2 + 1 = 0 can be satisfied by no real values of x and y.
It is usual to say that the locus is now one composed of
imaginary points. But this idea of imaginary points in
geometry is really one of great complexity, which we will
not now enter into.

Some exceptional cases are included in the general form
of the equation which may not be immediately recognized as
conic sections. By properly choosing the constants the equa-
tion can be made to represent two straight lines. Now two
intersecting straight lines may fairly be said to come under



INTRODUCTION TO MATHEMATICS 117

the Greek idea of a conic section. For, by referring to the
picture of the double cone above, it will be seen that some
planes through the vertex, V , will cut the cone in a pair
of straight lines intersecting at V . The case of two parallel
straight lines can be included by considering a circular cylin-
der as a particular case of a cone. Then a plane, which cuts
it and is parallel to its axis, will cut it in two parallel straight
lines. Anyhow, whether or no the ancient Greek would have
allowed these special cases to be called conic sections, they
are certainly included among the curves represented by the
general algebraic form of the second degree. This fact is
worth noting; for it is characteristic of modern mathematics
to include among general forms all sorts of particular cases
which would formerly have received special treatment. This
is due to its pursuit of generality.



CHAPTER XI

FUNCTIONS

The mathematical use of the term function has been
adopted also in common life. For example, “His temper is
a function of his digestion,” uses the term exactly in this
mathematical sense. It means that a rule can be assigned
which will tell you what his temper will be when you know
how his digestion is working. Thus the idea of a “function”
is simple enough, we only have to see how it is applied in
mathematics to variable numbers. Let us think first of some
concrete examples: If a train has been travelling at the rate
of twenty miles per hour, the distance (s miles) gone after
any number of hours, say t, is given by s = 20 × t; and s is
called a function of t. Also 20 × t is the function of t with
which s is identical. If John is one year older than Thomas,
then, when Thomas is at any age of x years, John’s age
(y years) is given by y = x + 1; and y is a function of x,
namely, is the function x+ 1.

In these examples t and x are called the “arguments” of
the functions in which they appear. Thus t is the argument
of the function 20× t, and x is the argument of the function
x + 1. If s = 20× t, and y = x + 1, then s and y are called
the “values” of the functions 20× t and x+ 1 respectively.

Coming now to the general case, we can define a function
in mathematics as a correlation between two variable num-
bers, called respectively the argument and the value of the
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function, such that whatever value be assigned to the “ar-
gument of the function” the “value of the function” is defi-
nitely (i.e. uniquely) determined. The converse is not nec-
essarily true, namely, that when the value of the function is
determined the argument is also uniquely determined. Other
functions of the argument x are y = x2, y = 2x2 + 3x + 1,
y = x, y = log x, y = sinx. The last two functions of this
group will be readily recognizable by those who understand
a little algebra and trigonometry. It is not worth while to
delay now for their explanation, as they are merely quoted
for the sake of example.

Up to this point, though we have defined what we mean
by a function in general, we have only mentioned a series
of special functions. But mathematics, true to its general
methods of procedure, symbolizes the general idea of any
function. It does this by writing F (x), f(x), g(x), φ(x), etc.,
for any function of x, where the argument x is placed in a
bracket, and some letter like F , f , g, φ, etc., is prefixed to
the bracket to stand for the function. This notation has its
defects. Thus it obviously clashes with the convention that
the single letters are to represent variable numbers; since
here F , f , g, φ, etc., prefixed to a bracket stand for variable
functions. It would be easy to give examples in which we can
only trust to common sense and the context to see what is
meant. One way of evading the confusion is by using Greek
letters (e.g. φ as above) for functions; another way is to keep
to f and F (the initial letter of function) for the functional
letter, and, if other variable functions have to be symbolized,
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to take an adjacent letter like g.
With these explanations and cautions, we write y = f(x),

to denote that y is the value of some undetermined function
of the argument x; where f(x) may stand for anything such
as x+ 1, x2 − 2x+ 1, sinx, log x, or merely for x itself. The
essential point is that when x is given, then y is thereby defi-
nitely determined. It is important to be quite clear as to the
generality of this idea. Thus in y = f(x), we may determine,
if we choose, f(x) to mean that when x is an integer, f(x) is
zero, and when x has any other value, f(x) is 1. Accordingly,
putting y = f(x), with this choice for the meaning of f , y is
either 0 or 1 according as the value of x is integral or other-
wise. Thus f(1) = 0, f(2) = 0, f(2

3
) = 1, f(

√
2) = 1, and

so on. This choice for the meaning of f(x) gives a perfectly
good function of the argument x according to the general
definition of a function.

A function, which after all is only a sort of correlation
between two variables, is represented like other correlations
by a graph, that is in effect by the methods of coordinate
geometry. For example, fig. 2 in Chapter II. is the graph

of the function
1

v
where v is the argument and p the value

of the function. In this case the graph is only drawn for
positive values of v, which are the only values possessing
any meaning for the physical application considered in that
chapter. Again in fig. 14 of Chapter IX. the whole length of
the line AB, unlimited in both directions, is the graph of the
function x+ 1, where x is the argument and y is the value of
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the function; and in the same figure the unlimited line A1B
is the graph of the function 1− x, and the line LOL′ is the
graph of the function x, x being the argument and y the
value of the function.

These functions, which are expressed by simple algebraic
formulæ, are adapted for representation by graphs. But for
some functions this representation would be very misleading
without a detailed explanation, or might even be impossible.
Thus, consider the function mentioned above, which has the
value 1 for all values of its argument x, except those which
are integral, e.g. except for x = 0, x = 1, x = 2, etc., when it
has the value 0. Its appearance on a graph would be that of
the straight line ABA′ drawn parallel to the axis XOX ′ at
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C3

B4

C4
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Fig. 20.

a distance from it of 1 unit of length. But the points, B, C1,
C2, C3, C4, etc., corresponding to the values 0, 1, 2, 3, 4, etc.,
of the argument x, are to be omitted, and instead of them
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the points O, B1, B2, B3, B4, etc., on the axis OX, are to
be taken. It is easy to find functions for which the graph-
ical representation is not only inconvenient but impossible.
Functions which do not lend themselves to graphs are im-
portant in the higher mathematics, but we need not concern
ourselves further about them here.

The most important division between functions is that
between continuous and discontinuous functions. A function
is continuous when its value only alters gradually for gradual
alterations of the argument, and is discontinuous when it
can alter its value by sudden jumps. Thus the two functions
x+ 1 and 1− x, whose graphs are depicted as straight lines
in fig. 14 of Chapter IX., are continuous functions, and so

is the function
1

v
, depicted in Chapter II., if we only think

of positive values of v. But the function depicted in fig. 20
of this chapter is discontinuous since at the values x = 1,
x = 2, etc., of its argument, its value gives sudden jumps.

Let us think of some examples of functions presented to
us in nature, so as to get into our heads the real bearing of
continuity and discontinuity. Consider a train in its journey
along a railway line, say from Euston Station, the terminus
in London of the London and North-Western Railway. Along
the line in order lie the stations of Bletchley and Rugby. Let
t be the number of hours which the train has been on its jour-
ney from Euston, and s be the number of miles passed over.
Then s is a function of t, i.e. is the variable value correspond-
ing to the variable argument t. If we know the circumstances
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of the train’s run, we know s as soon as any special value of t
is given. Now, miracles apart, we may confidently assume
that s is a continuous function of t. It is impossible to allow
for the contingency that we can trace the train continuously
from Euston to Bletchley, and that then, without any inter-
vening time, however short, it should appear at Rugby. The
idea is too fantastic to enter into our calculation: it con-
templates possibilities not to be found outside the Arabian
Nights ; and even in those tales sheer discontinuity of motion
hardly enters into the imagination, they do not dare to tax
our credulity with anything more than very unusual speed.
But unusual speed is no contradiction to the great law of
continuity of motion which appears to hold in nature. Thus
light moves at the rate of about 190, 000 miles per second
and comes to us from the sun in seven or eight minutes;
but, in spite of this speed, its distance travelled is always a
continuous function of the time.

It is not quite so obvious to us that the velocity of a body
is invariably a continuous function of the time. Consider the
train at any time t: it is moving with some definite velocity,
say v miles per hour, where v is zero when the train is at rest
in a station and is negative when the train is backing. Now
we readily allow that v cannot change its value suddenly for
a big, heavy train. The train certainly cannot be running at
forty miles per hour from 11.45 a.m. up to noon, and then
suddenly, without any lapse of time, commence running at
50 miles per hour. We at once admit that the change of
velocity will be a gradual process. But how about sudden
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blows of adequate magnitude? Suppose two trains collide;
or, to take smaller objects, suppose a man kicks a football.
It certainly appears to our sense as though the football began
suddenly to move. Thus, in the case of velocity our senses
do not revolt at the idea of its being a discontinuous func-
tion of the time, as they did at the idea of the train being
instantaneously transported from Bletchley to Rugby. As a
matter of fact, if the laws of motion, with their conception
of mass, are true, there is no such thing as discontinuous
velocity in nature. Anything that appears to our senses as
discontinuous change of velocity must, according to them,
be considered to be a case of gradual change which is too
quick to be perceptible to us. It would be rash, however, to
rush into the generalization that no discontinuous functions
are presented to us in nature. A man who, trusting that the
mean height of the land above sea-level between London and
Paris was a continuous function of the distance from London,
walked at night on Shakespeare’s Cliff by Dover in contem-
plation of the Milky Way, would be dead before he had had
time to rearrange his ideas as to the necessity of caution in
scientific conclusions.

It is very easy to find a discontinuous function, even if we
confine ourselves to the simplest of the algebraic formulæ.

For example, take the function y =
1

x
, which we have al-

ready considered in the form p =
1

v
, where v was confined

to positive values. But now let x have any value, positive or
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negative. The graph of the function is exhibited in fig. 21.
Suppose x to change continuously from a large negative value
through a numerically decreasing set of negative values up
to 0, and thence through the series of increasing positive
values. Accordingly, if a moving point, M , represents x
on XOX ′, M starts at the extreme left of the axis XOX ′

and successively moves through M1, M2, M3, M4, etc. The
corresponding points on the function are P1, P2, P3, P4, etc.
It is easy to see that there is a point of discontinuity at x = 0,
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i.e. at the origin O. For the value of the function on the neg-
ative (left) side of the origin becomes endlessly great, but
negative, and the function reappears on the positive (right)
side as endlessly great but positive. Hence, however small
we take the length M2M3, there is a finite jump between the
values of the function at M2 and M3. Indeed, this case has
the peculiarity that the smaller we take the length between
M2 and M3, so long as they enclose the origin, the bigger is
the jump in value of the function between them. This graph
brings out, what is also apparent in fig. 20 of this chapter,
that for many functions the discontinuities only occur at iso-
lated points, so that by restricting the values of the argument
we obtain a continuous function for these remaining values.

Thus it is evident from fig. 21 that in y =
1

x
, if we keep

to positive values only and exclude the origin, we obtain a
continuous function. Similarly the same function, if we keep
to negative values only, excluding the origin, is continuous.
Again the function which is graphed in fig. 20 is continuous
between B and C1, and between C1 and C2, and between
C2 and C3, and so on, always in each case excluding the end
points. It is, however, easy to find functions such that their
discontinuities occur at all points. For example, consider
a function f(x), such that when x is any fractional num-
ber f(x) = 1, and when x is any incommensurable number
f(x) = 2. This function is discontinuous at all points.

Finally, we will look a little more closely at the defini-
tion of continuity given above. We have said that a function
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is continuous when its value only alters gradually for grad-
ual alterations of the argument, and is discontinuous when
it can alter its value by sudden jumps. This is exactly the
sort of definition which satisfied our mathematical forefa-
thers and no longer satisfies modern mathematicians. It is
worth while to spend some time over it; for when we un-
derstand the modern objections to it, we shall have gone a
long way towards the understanding of the spirit of mod-
ern mathematics. The whole difference between the older
and the newer mathematics lies in the fact that vague half-
metaphorical terms like “gradually” are no longer tolerated
in its exact statements. Modern mathematics will only admit
statements and definitions and arguments which exclusively
employ the few simple ideas about number and magnitude
and variables on which the science is founded. Of two num-
bers one can be greater or less than the other; and one can
be such and such a multiple of the other; but there is no re-
lation of “graduality” between two numbers, and hence the
term is inadmissible. Now this may seem at first sight to
be great pedantry. To this charge there are two answers. In
the first place, during the first half of the nineteenth century
it was found by some great mathematicians, especially Abel
in Sweden, and Weierstrass in Germany, that large parts of
mathematics as enunciated in the old happy-go-lucky man-
ner were simply wrong. Macaulay in his essay on Bacon
contrasts the certainty of mathematics with the uncertainty
of philosophy; and by way of a rhetorical example he says,
“There has been no reaction against Taylor’s theorem.” He
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could not have chosen a worse example. For, without having
made an examination of English text-books on mathematics
contemporary with the publication of this essay, the assump-
tion is a fairly safe one that Taylor’s theorem was enunciated
and proved wrongly in every one of them. Accordingly, the
anxious precision of modern mathematics is necessary for
accuracy. In the second place it is necessary for research.
It makes for clearness of thought, and thence for boldness of
thought and for fertility in trying new combinations of ideas.
When the initial statements are vague and slipshod, at every
subsequent stage of thought common sense has to step in to
limit applications and to explain meanings. Now in creative
thought common sense is a bad master. Its sole criterion for
judgment is that the new ideas shall look like the old ones.
In other words it can only act by suppressing originality.

In working our way towards the precise definition of con-
tinuity (as applied to functions) let us consider more closely
the statement that there is no relation of “graduality” be-
tween numbers. It may be asked, Cannot one number be only
slightly greater than another number, or in other words, can-
not the difference between the two numbers be small? The
whole point is that in the abstract, apart from some arbitrar-
ily assumed application, there is no such thing as a great or
a small number. A million miles is a small number of miles
for an astronomer investigating the fixed stars, but a mil-
lion pounds is a large yearly income. Again, one-quarter is a
large fraction of one’s income to give away in charity, but is
a small fraction of it to retain for private use. Examples can
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be accumulated indefinitely to show that great or small in
any absolute sense have no abstract application to numbers.
We can say of two numbers that one is greater or smaller
than another, but not without specification of particular cir-
cumstances that any one number is great or small. Our task
therefore is to define continuity without any mention of a
“small” or “gradual” change in value of the function.

In order to do this we will give names to some ideas,
which will also be useful when we come to consider limits
and the differential calculus.

An “interval” of values of the argument x of a func-
tion f(x) is all the values lying between some two values
of the argument. For example, the interval between x = 1
and x = 2 consists of all the values which x can take lying
between 1 and 2, i.e. it consists of all the real numbers be-
tween 1 and 2. But the bounding numbers of an interval
need not be integers. An interval of values of the argument
contains a number a, when a is a member of the interval.
For example, the interval between 1 and 2 contains 3

2
, 5

3
, 7

4
,

and so on.
A set of numbers approximates to a number a within a

standard k, when the numerical difference between a and
every number of the set is less than k. Here k is the “stan-
dard of approximation.” Thus the set of numbers 3, 4, 6, 8,
approximates to the number 5 within the standard 4. In
this case the standard 4 is not the smallest which could have
been chosen, the set also approximates to 5 within any of
the standards 3.1 or 3.01 or 3.001. Again, the numbers, 3.1,
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3.141, 3.1415, 3.14159 approximate to 3.13102 within the
standard .032, and also within the smaller standard .03103.

These two ideas of an interval and of approximation to
a number within a standard are easy enough; their only dif-
ficulty is that they look rather trivial. But when combined
with the next idea, that of the “neighbourhood” of a num-
ber, they form the foundation of modern mathematical rea-
soning. What do we mean by saying that something is true
for a function f(x) in the neighbourhood of the value a of
the argument x? It is this fundamental notion which we have
now got to make precise.

The values of a function f(x) are said to possess a char-
acteristic in the “neighbourhood of a” when some interval
can be found, which (i) contains the number a not as an
end-point, and (ii) is such that every value of the function
for arguments, other than a, lying within that interval pos-
sesses the characteristic. The value f(a) of the function for
the argument a may or may not possess the characteristic.
Nothing is decided on this point by statements about the
neighbourhood of a.

For example, suppose we take the particular function x2.
Now in the neighbourhood of 2, the values of x2 are less
than 5. For we can find an interval, e.g. from 1 to 2.1, which
(i) contains 2 not as an end-point, and (ii) is such that, for
values of x lying within it, x2 is less than 5.

Now, combining the preceding ideas we know what is
meant by saying that in the neighbourhood of a the func-
tion f(x) approximates to c within the standard k. It means
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that some interval can be found which (i) includes a not as
an end-point, and (ii) is such that all values of f(x), where
x lies in the interval and is not a, differ from c by less than k.
For example, in the neighbourhood of 2, the function

√
x

approximates to 1.41425 within the standard .0001. This is
true because the square root of 1.99996164 is 1.4142 and the
square root of 2.00024449 is 1.4143; hence for values of x
lying in the interval 1.99996164 to 2.00024449, which con-
tains 2 not as an end-point, the values of the function

√
x

all lie between 1.4142 and 1.4143, and they therefore all dif-
fer from 1.41425 by less than .0001. In this case we can,
if we like, fix a smaller standard of approximation, namely
.000051 or .0000501. Again, to take another example, in
the neighbourhood of 2 the function x2 approximates to 4
within the standard .5. For (1.9)2 = 3.61 and (2.1)2 = 4.41,
and thus the required interval 1.9 to 2.1, containing 2 not as
an end-point, has been found. This example brings out the
fact that statements about a function f(x) in the neighbour-
hood of a number a are distinct from statements about the
value of f(x) when x = a. The production of an interval,
throughout which the statement is true, is required. Thus
the mere fact that 22 = 4 does not by itself justify us in say-
ing that in the neighbourhood of 2 the function x2 is equal
to 4. This statement would be untrue, because no interval
can be produced with the required property. Also, the fact
that 22 = 4 does not by itself justify us in saying that in the
neighbourhood of 2 the function x2 approximates to 4 within
the standard .5; although as a matter of fact, the statement
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has just been proved to be true.
If we understand the preceding ideas, we understand the

foundations of modern mathematics. We shall recur to anal-
ogous ideas in the chapter on Series, and again in the chap-
ter on the Differential Calculus. Meanwhile, we are now
prepared to define “continuous functions.” A function f(x)
is “continuous” at a value a of its argument, when in the
neighbourhood of a its values approximate to f(a) (i.e. to
its value at a) within every standard of approximation.

This means that, whatever standard k be chosen, in the
neighbourhood of a f(x) approximates to f(a) within the
standard k. For example, x2 is continuous at the value 2 of
its argument, x, because however k be chosen we can always
find an interval, which (i) contains 2 not as an end-point, and
(ii) is such that the values of x2 for arguments lying within
it approximate to 4 (i.e. 22) within the standard k. Thus,
suppose we choose the standard .1; now (1.999)2 = 3.996001,
and (2.01)2 = 4.0401, and both these numbers differ from 4
by less than .1. Hence, within the interval 1.999 to 2.01
the values of x2 approximate to 4 within the standard .1.
Similarly an interval can be produced for any other standard
which we like to try.

Take the example of the railway train. Its velocity is
continuous as it passes the signal box, if whatever velocity
you like to assign (say one-millionth of a mile per hour) an
interval of time can be found extending before and after the
instant of passing, such that at all instants within it the
train’s velocity differs from that with which the train passed
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the box by less than one-millionth of a mile per hour; and
the same is true whatever other velocity be mentioned in the
place of one-millionth of a mile per hour.



CHAPTER XII

PERIODICITY IN NATURE

The whole life of Nature is dominated by the existence of
periodic events, that is, by the existence of successive events
so analogous to each other that, without any straining of lan-
guage, they may be termed recurrences of the same event.
The rotation of the earth produces the successive days. It
is true that each day is different from the preceding days,
however abstractly we define the meaning of a day, so as to
exclude casual phenomena. But with a sufficiently abstract
definition of a day, the distinction in properties between two
days becomes faint and remote from practical interest; and
each day may then be conceived as a recurrence of the phe-
nomenon of one rotation of the earth. Again the path of
the earth round the sun leads to the yearly recurrence of
the seasons, and imposes another periodicity on all the op-
erations of nature. Another less fundamental periodicity is
provided by the phases of the moon. In modern civilized life,
with its artificial light, these phases are of slight importance,
but in ancient times, in climates where the days are burn-
ing and the skies clear, human life was apparently largely
influenced by the existence of moonlight. Accordingly our
divisions into weeks and months, with their religious asso-
ciations, have spread over the European races from Syria
and Mesopotamia, though independent observances follow-
ing the moon’s phases are found amongst most nations. It
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is, however, through the tides, and not through its phases of
light and darkness, that the moon’s periodicity has chiefly
influenced the history of the earth.

Our bodily life is essentially periodic. It is dominated
by the beatings of the heart, and the recurrence of breath-
ing. The presupposition of periodicity is indeed fundamental
to our very conception of life. We cannot imagine a course
of nature in which, as events progressed, we should be un-
able to say: “This has happened before.” The whole con-
ception of experience as a guide to conduct would be ab-
sent. Men would always find themselves in new situations
possessing no substratum of identity with anything in past
history. The very means of measuring time as a quantity
would be absent. Events might still be recognized as occur-
ring in a series, so that some were earlier and others later.
But we now go beyond this bare recognition. We can not
only say that three events, A, B, C, occurred in this order,
so that A came before B, and B before C; but also we can
say that the length of time between the occurrences of A
and B was twice as long as that between B and C. Now,
quantity of time is essentially dependent on observing the
number of natural recurrences which have intervened. We
may say that the length of time between A and B was so
many days, or so many months, or so many years, accord-
ing to the type of recurrence to which we wish to appeal.
Indeed, at the beginning of civilization, these three modes
of measuring time were really distinct. It has been one of
the first tasks of science among civilized or semi-civilized
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nations, to fuse them into one coherent measure. The full
extent of this task must be grasped. It is necessary to deter-
mine, not merely what number of days (e.g. 365.25. . . ) go
to some one year, but also previously to determine that the
same number of days do go to the successive years. We can
imagine a world in which periodicities exist, but such that
no two are coherent. In some years there might be 200 days
and in others 350. The determination of the broad general
consistency of the more important periodicities was the first
step in natural science. This consistency arises from no ab-
stract intuitive law of thought; it is merely an observed fact
of nature guaranteed by experience. Indeed, so far is it from
being a necessary law, that it is not even exactly true There
are divergencies in every case. For some instances these di-
vergencies are easily observed and are therefore immediately
apparent. In other cases it requires the most refined obser-
vations and astronomical accuracy to make them apparent.
Broadly speaking, all recurrences depending on living beings,
such as the beatings of the heart, are subject in comparison
with other recurrences to rapid variations. The great stable
obvious recurrences—stable in the sense of mutually agreeing
with great accuracy—are those depending on the motion of
the earth as a whole, and on similar motions of the heavenly
bodies.

We therefore assume that these astronomical recurrences
mark out equal intervals of time. But how are we to deal with
their discrepancies which the refined observations of astron-
omy detect? Apparently we are reduced to the arbitrary
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assumption that one or other of these sets of phenomena
marks out equal times—e.g. that either all days are of equal
length, or that all years are of equal length. This is not
so: some assumptions must be made, but the assumption
which underlies the whole procedure of the astronomers in
determining the measure of time is that the laws of motion
are exactly verified. Before explaining how this is done, it
is interesting to observe that this relegation of the determi-
nation of the measure of time to the astronomers arises (as
has been said) from the stable consistency of the recurrences
with which they deal. If such a superior consistency had
been noted among the recurrences characteristic of the hu-
man body, we should naturally have looked to the doctors
of medicine for the regulation of our clocks.

In considering how the laws of motion come into the mat-
ter, note that two inconsistent modes of measuring time will
yield different variations of velocity to the same body. For
example, suppose we define an hour as one twenty-fourth of
a day, and take the case of a train running uniformly for
two hours at the rate of twenty miles per hour. Now take
a grossly inconsistent measure of time, and suppose that it
makes the first hour to be twice as long as the second hour.
Then, according to this other measure of duration, the time
of the train’s run is divided into two parts, during each of
which it has traversed the same distance, namely, twenty
miles; but the duration of the first part is twice as long as
that of the second part. Hence the velocity of the train has
not been uniform, and on the average the velocity during the
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second period is twice that during the first period. Thus the
question as to whether the train has been running uniformly
or not entirely depends on the standard of time which we
adopt.

Now, for all ordinary purposes of life on the earth, the
various astronomical recurrences may be looked on as ab-
solutely consistent; and, furthermore assuming their consis-
tency, and thereby assuming the velocities and changes of
velocities possessed by bodies, we find that the laws of mo-
tion, which have been considered above, are almost exactly
verified. But only almost exactly when we come to some
of the astronomical phenomena. We find, however, that by
assuming slightly different velocities for the rotations and
motions of the planets and stars, the laws would be exactly
verified. This assumption is then made; and we have, in fact
thereby, adopted a measure of time, which is indeed defined
by reference to the astronomical phenomena, but not so as
to be consistent with the uniformity of any one of them. But
the broad fact remains that the uniform flow of time on which
so much is based, is itself dependent on the observation of
periodic events.

Even phenomena, which on the surface seem casual and
exceptional, or, on the other hand, maintain themselves with
a uniform persistency, may be due to the remote influence
of periodicity. Take for example, the principle of resonance.
Resonance arises when two sets of connected circumstances
have the same periodicities. It is a dynamical law that the
small vibrations of all bodies when left to themselves take
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place in definite times characteristic of the body. Thus a pen-
dulum with a small swing always vibrates in some definite
time, characteristic of its shape and distribution of weight
and length. A more complicated body may have many ways
of vibrating; but each of its modes of vibration will have
its own peculiar “period.” Those periods of vibration of a
body are called its “free” periods. Thus a pendulum has
but one period of vibration, while a suspension bridge will
have many. We get a musical instrument, like a violin string,
when the periods of vibration are all simple submultiples of
the longest; i.e. if t seconds be the longest period, the others
are 1

2
t, 1

3
t, and so on, where any of these smaller periods may

be absent. Now, suppose we excite the vibrations of a body
by a cause which is itself periodic; then, if the period of the
cause is very nearly that of one of the periods of the body,
that mode of vibration of the body is very violently excited;
even although the magnitude of the exciting cause is small.
This phenomenon is called “resonance.” The general reason
is easy to understand. Any one wanting to upset a rocking
stone will push “in tune” with the oscillations of the stone,
so as always to secure a favourable moment for a push. If
the pushes are out of tune, some increase the oscillations, but
others check them. But when they are in tune, after a time
all the pushes are favourable. The word “resonance” comes
from considerations of sound: but the phenomenon extends
far beyond the region of sound. The laws of absorption and
emission of light depend on it, the “tuning” of receivers for
wireless telegraphy, the comparative importance of the in-
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fluences of planets on each other’s motion, the danger to a
suspension bridge as troops march over it in step, and the
excessive vibration of some ships under the rhythmical beat
of their machinery at certain speeds. This coincidence of
periodicities may produce steady phenomena when there is
a constant association of the two periodic events, or it may
produce violent and sudden outbursts when the association
is fortuitous and temporary.

Again, the characteristic and constant periods of vibra-
tion mentioned above are the underlying causes of what ap-
pear to us as steady excitements of our senses. We work for
hours in a steady light, or we listen to a steady unvarying
sound. But, if modern science be correct, this steadiness has
no counterpart in nature. The steady light is due to the im-
pact on the eye of a countless number of periodic waves in a
vibrating ether, and the steady sound to similar waves in a
vibrating air. It is not our purpose here to explain the the-
ory of light or the theory of sound. We have said enough to
make it evident that one of the first steps necessary to make
mathematics a fit instrument for the investigation of Nature
is that it should be able to express the essential periodicity
of things. If we have grasped this, we can understand the
importance of the mathematical conceptions which we have
next to consider, namely, periodic functions.



CHAPTER XIII

TRIGONOMETRY

Trigonometry did not take its rise from the general
consideration of the periodicity of nature. In this respect its
history is analogous to that of conic sections, which also had
their origin in very particular ideas. Indeed, a comparison of
the histories of the two sciences yields some very instructive
analogies and contrasts. Trigonometry, like conic sections,
had its origin among the Greeks. Its inventor was Hipparchus
(born about 160 b.c.), a Greek astronomer, who made his
observations at Rhodes. His services to astronomy were very
great, and it left his hands a truly scientific subject with im-
portant results established, and the right method of progress
indicated. Perhaps the invention of trigonometry was not
the least of these services to the main science of his study.
The next man who extended trigonometry was Ptolemy, the
great Alexandrian astronomer, whom we have already men-
tioned. We now see at once the great contrast between conic
sections and trigonometry. The origin of trigonometry was
practical; it was invented because it was necessary for as-
tronomical research. The origin of conic sections was purely
theoretical. The only reason for its initial study was the
abstract interest of the ideas involved. Characteristically
enough conic sections were invented about 150 years ear-
lier than trigonometry, during the very best period of Greek
thought. But the importance of trigonometry, both to the
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theory and the application of mathematics, is only one of
innumerable instances of the fruitful ideas which the general
science has gained from its practical applications.

We will try and make clear to ourselves what trigonome-
try is, and why it should be generated by the scientific study
of astronomy. In the first place: What are the measurements
which can be made by an astronomer? They are measure-
ments of time and measurements of angles. The astronomer
may adjust a telescope (for it is easier to discuss the familiar
instrument of modern astronomers) so that it can only turn
about a fixed axis pointing east and west; the result is that
the telescope can only point to the south, with a greater or
less elevation of direction, or, if turned round beyond the
zenith, point to the north. This is the transit instrument,
the great instrument for the exact measurement of the times
at which stars are due south or due north. But indirectly
this instrument measures angles. For when the time elapsed
between the transits of two stars has been noted, by the as-
sumption of the uniform rotation of the earth, we obtain the
angle through which the earth has turned in that period of
time. Again, by other instruments, the angle between two
stars can be directly measured. For if E is the eye of the
astronomer, and EA and EB are the directions in which the
stars are seen, it is easy to devise instruments which shall
measure the angle AEB. Hence, when the astronomer is
forming a survey of the heavens, he is, in fact, measuring
angles so as to fix the relative directions of the stars and
planets at any instant. Again, in the analogous problem of
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land-surveying, angles are the chief subject of measurements.
The direct measurements of length are only rarely possible
with any accuracy; rivers, houses, forests, mountains, and
general irregularities of ground all get in the way. The sur-
vey of a whole country will depend only on one or two direct
measurements of length, made with the greatest elaboration
in selected places like Salisbury Plain. The main work of a
survey is the measurement of angles. For example, A, B,
and C will be conspicuous points in the district surveyed,
say the tops of church towers. These points are visible each
from the others. Then it is a very simple matter at A to mea-
sure the angle BAC, and at B to measure the angle ABC,
and at C to measure the angle BCA. Theoretically, it is
only necessary to measure two of these angles; for, by a well-
known proposition in geometry, the sum of the three angles
of a triangle amounts to two right-angles, so that when two
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of the angles are known, the third can be deduced. It is bet-
ter, however, in practice to measure all three, and then any
small errors of observation can be checked. In the process of
map-making a country is completely covered with triangles
in this way. This process is called triangulation, and is the
fundamental process in a survey.

Now, when all the angles of a triangle are known, the
shape of the triangle is known—that is, the shape as distin-
guished from the size. We here come upon the great principle
of geometrical similarity. The idea is very familiar to us in its
practical applications. We are all familiar with the idea of a
plan drawn to scale. Thus if the scale of a plan be an inch to
a yard, a length of three inches in the plan means a length of
three yards in the original. Also the shapes depicted in the
plan are the shapes in the original, so that a right-angle in
the original appears as a right-angle in the plan. Similarly in
a map, which is only a plan of a country, the proportions of
the lengths in the map are the proportions of the distances
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between the places indicated, and the directions in the map
are the directions in the country. For example, if in the map
one place is north-north-west of the other, so it is in reality;
that is to say, in a map the angles are the same as in reality.
Geometrical similarity may be defined thus: Two figures are
similar (i) if to any point in one figure a point in the other
figure corresponds, so that to every line there is a correspond-
ing line, and to every angle a corresponding angle, and (ii) if
the lengths of corresponding lines are in a fixed proportion,
and the magnitudes of corresponding angles are the same.
The fixed proportion of the lengths of corresponding lines in
a map (or plan) and in the original is called the scale of the
map. The scale should always be indicated on the margin of
every map and plan. It has already been pointed out that
two triangles whose angles are respectively equal are similar.
Thus, if the two triangles ABC and DEF have the angles

B E ′ C E F

A

DD′

Fig. 24.
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at A and D equal, and those at B and E, and those at C
and F , then DE is to AB in the same proportion as EF is
to BC, and as FD is to CA. But it is not true of other
figures that similarity is guaranteed by the mere equality of
angles. Take for example, the familiar cases of a rectangle
and a square. Let ABCD be a square, and ABEF be a
rectangle. Then all the corresponding angles are equal. But
whereas the side AB of the square is equal to the side AB

B C E

A D F

Fig. 25.

of the rectangle, the side BC of the square is about half the
size of the side BE of the rectangle. Hence it is not true
that the square ABCD is similar to the rectangle ABEF .
This peculiar property of the triangle, which is not shared
by other rectilinear figures, makes it the fundamental figure
in the theory of similarity. Hence in surveys, triangulation
is the fundamental process; and hence also arises the word
“trigonometry,” derived from the two Greek words trigonon
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a triangle and metria measurement. The fundamental ques-
tion from which trigonometry arose is this: Given the mag-
nitudes of the angles of a triangle, what can be stated as
to the relative magnitudes of the sides. Note that we say
“relative magnitudes of the sides,” since by the theory of
similarity it is only the proportions of the sides which are
known. In order to answer this question, certain functions
of the magnitudes of an angle, considered as the argument,
are introduced. In their origin these functions were got at
by considering a right-angled triangle, and the magnitude of
the angle was defined by the length of the arc of a circle. In
modern elementary books, the fundamental position of the
arc of the circle as defining the magnitude of the angle has
been pushed somewhat to the background, not to the ad-
vantage either of theory or clearness of explanation. It must
first be noticed that, in relation to similarity, the circle holds
the same fundamental position among curvilinear figures, as
does the triangle among rectilinear figures. Any two circles
are similar figures; they only differ in scale. The lengths of
the circumferences of two circles, such as APA′ and A1P1A

′
1

in the fig. 26 are in proportion to the lengths of their radii.
Furthermore, if the two circles have the same centre O, as
do the two circles in fig. 26, then the arcs AP and A1P1

intercepted by the arms of any angle AOP , are also in pro-
portion to their radii. Hence the ratio of the length of the

arc AP to the length of the radius OP , that is
arc AP

radius OP
is a number which is quite independent of the length OP ,
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and is the same as the fraction
arc A1P1

radius OP1

. This fraction

of “arc divided by radius” is the proper theoretical way to
measure the magnitude of an angle; for it is dependent on no
arbitrary unit of length, and on no arbitrary way of divid-
ing up any arbitrarily assumed angle, such as a right-angle.

Thus the fraction
AP

OA
represents the magnitude of the an-
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gle AOP . Now draw PM perpendicularly to OA. Then
the Greek mathematicians called the line PM the sine of
the arc AP , and the line OM the cosine of the arc AP .
They were well aware that the importance of the relations of
these various lines to each other was dependent on the theory
of similarity which we have just expounded. But they did
not make their definitions express the properties which arise
from this theory. Also they had not in their heads the mod-
ern general ideas respecting functions as correlating pairs of
variable numbers, nor in fact were they aware of any modern
conception of algebra and algebraic analysis. Accordingly, it
was natural to them to think merely of the relations between
certain lines in a diagram. For us the case is different: we
wish to embody our more powerful ideas.

Hence, in modern mathematics, instead of considering

the arc AP , we consider the fraction
AP

OP
, which is a number

the same for all lengths of OP ; and, instead of consider-

ing the lines PM and OM , we consider the fractions
PM

OP

and
OM

OP
, which again are numbers not dependent on the

length of OP , i.e. not dependent on the scale of our di-

agrams. Then we define the number
PM

OP
to be the sine

of the number
PA

OP
, and the number

OM

OP
to be the cosine

of the number
PA

OP
. These fractional forms are clumsy to
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print; so let us put u for the fraction
AP

OP
, which represents

the magnitude of the angle AOP , and put v for the frac-

tion
PM

OM
, and w for the fraction

OM

OP
. Then u, v, w, are

numbers, and, since we are talking of any angle AOP , they
are variable numbers. But a correlation exists between their
magnitudes, so that when u (i.e. the angle AOP ) is given
the magnitudes of v and w are definitely determined. Hence
v and w are functions of the argument u. We have called v
the sine of u, and w the cosine of u. We wish to adapt the
general functional notation y = f(x) to these special cases:
so in modern mathematics we write “sin” for “f” when we
want to indicate the special function of “sine,” and “cos”
for “f” when we want to indicate the special function of
“cosine.” Thus, with the above meanings for u, v, w, we get

v = sinu, and w = cosu,

where the brackets surrounding the x in f(x) are omitted
for the special functions. The meaning of these functions
sin and cos as correlating the pairs of numbers u and v, and
u and w is, that the functional relations are to be found
by constructing (cf. fig. 26) an angle AOP , whose measure
“AP divided by OP” is equal to u, and that then v is the
number given by “PM divided by OP” and w is the number
given by “OM divided by OP .”

It is evident that without some further definitions we
shall get into difficulties when the number u is taken too
large. For then the arc AP may be greater than one-quarter
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of the circumference of the circle, and the point M (cf. figs.
26 and 27) may fall between O and A′ and not between O
and A. Also P may be below the line AOA′ and not above
it as in fig. 26. In order to get over this difficulty we have
recourse to the ideas and conventions of coordinate geometry
in making our complete definitions of the sine and cosine.
Let one arm OA of the angle be the axis OX, and produce
the axis backwards to obtain its negative part OX ′. Draw
the other axis Y OY ′ perpendicular to it. Let any point P
at a distance r from O have coordinates x and y. These
coordinates are both positive in the first “quadrant” of the
plan, e.g. the coordinates x and y of P in fig. 27. In the other
quadrants, either one or both of the coordinates are negative,
for example, x′ and y for P ′, and x′ and y′ for P ′′, and x
and y′ for P ′′′ in fig. 27, where x′ and y′ are both negative
numbers. The positive angle POA is the arc AP divided

by r, its sine is
y

r
and its cosine is

x

r
; the positive angle AOP ′

is the arc ABP ′ divided by r, its sine is
y

r
and cosine

x′

r
; the

positive angle AOP ′′ is the arc ABA′P ′′ divided by r, its sine

is
y′

r
and its cosine is

x′

r
; the positive angle AOP ′′′ is the arc

ABA′B′P ′′′ divided by r, its sine is
y′

r
and its cosine is

x

r
.

But even now we have not gone far enough. For suppose
we choose u to be a number greater than the ratio of the
whole circumference of the circle to its radius. Owing to
the similarity of all circles this ratio is the same for all cir-
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cles. It is always denoted in mathematics by the symbol 2π,
where π is the Greek form of the letter p and its name in
the Greek alphabet is “pi.” It can be proved that π is an in-
commensurable number, and that therefore its value cannot
be expressed by any fraction, or by any terminating or re-
curring decimal. Its value to a few decimal places is 3.14159;
for many purposes a sufficiently accurate approximate value

is
22

7
. Mathematicians can easily calculate π to any de-
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gree of accuracy required, just as
√

2 can be so calculated.
Its value has been actually given to 707 places of decimals.
Such elaboration of calculation is merely a curiosity, and of
no practical or theoretical interest. The accurate determina-
tion of π is one of the two parts of the famous problem of
squaring the circle. The other part of the problem is, by the
theoretical methods of pure geometry to describe a straight
line equal in length to the circumference. Both parts of the
problem are now known to be impossible; and the insolu-
ble problem has now lost all special practical or theoretical
interest, having become absorbed in wider ideas.

After this digression on the value of π, we now return to
the question of the general definition of the magnitude of an
angle, so as to be able to produce an angle corresponding to
any value u. Suppose a moving point, Q, to start from A
on OX (cf. fig. 27), and to rotate in the positive direction
(anti-clockwise, in the figure considered) round the circum-
ference of the circle for any number of times, finally resting
at any point, e.g. at P or P ′ or P ′′ or P ′′′. Then the total
length of the curvilinear circular path traversed, divided by
the radius of the circle, r, is the generalized definition of a
positive angle of any size. Let x, y be the coordinates of
the point in which the point Q rests, i.e. in one of the four
alternative positions mentioned in fig. 27; x and y (as here
used) will either be x and y, or x′ and y, or x′ and y′, or

x and y′. Then the sign of this generalized angle is
y

r
and its

cosine is
x

r
. With these definitions the functional relations
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v = sinu and w = cosu, are at last defined for all positive
real values of u. For negative values of u we simply take
rotation of Q in the opposite (clockwise) direction; but it is
not worth our while to elaborate further on this point, now
that the general method of procedure has been explained.

These functions of sine and cosine, as thus defined, en-
able us to deal with the problems concerning the triangle
from which Trigonometry took its rise. But we are now in
a position to relate Trigonometry to the wider idea of Pe-
riodicity of which the importance was explained in the last
chapter. It is easy to see that the functions sinu and cosu
are periodic functions of u. For consider the position, P (in
fig. 27), of a moving point, Q, which has started from A
and revolved round the circle. This position, P , marks the

angles
arc AP

r
, and 2π +

arc AP

r
, and 4π +

arc AP

r
, and

6π +
arc AP

r
, and so on indefinitely. Now, all these angles

have the same sine and cosine, namely,
y

r
and

x

r
. Hence it

is easy to see that, if u be chosen to have any value, the
arguments u and 2π+u, and 4π+u, and 6π+u, and 8π+u
and so on indefinitely, have all the same values for the cor-
responding sines and cosines. In other words,

sinu = sin(2π + u) = sin(4π + u) = sin(6π + u) = etc.;

cosu = cos(2π + u) = cos(4π + u) = cos(6π + u) = etc.

This fact is expressed by saying that sinu and cosu are pe-
riodic functions with their period equal to 2π.
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The graph of the function y = sinx (notice that we now
abandon v and u for the more familiar y and x) is shown
in fig. 28. We take on the axis of x any arbitrary length
at pleasure to represent the number π, and on the axis of y
any arbitrary length at pleasure to represent the number 1.
The numerical values of the sine and cosine can never exceed
unity. The recurrence of the figure after periods of 2π will be
noticed. This graph represents the simplest style of periodic
function, out of which all others are constructed. The cosine
gives nothing fundamentally different from the sine. For it

is easy to prove that cosx = sin(x+
π

2
); hence it can be seen

that the graph of cosx is simply fig. 28 modified by drawing

the axis of OY through the point on OX marked
π

2
, instead

of drawing it in its actual position on the figure.
It is easy to construct a ‘sine’ function in which the period

O
1
2
π

π 2π 3π 4π 5π
X

1

Fig. 28.

has any assigned value a. For we have only to write

y = sin
2πx

a
,
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and then

sin
2π(x+ a)

a
= sin

(
2πx

a
+ 2π

)
= sin

2πx

a
.

Thus the period of this new function is now a. Let us now
give a general definition of what we mean by a periodic func-
tion. The function f(x) is periodic, with the period a, if
(i) for any value of x we have f(x) = f(x+a), and (ii) there
is no number b smaller than a such that for any value of x,
f(x) = f(x+ b).

The second clause is put into the definition because when

we have sin
2πx

a
, it is not only periodic in the period a, but

also in the periods 2a and 3a, and so on; this arises since

sin
2π(x+ 3a)

a
= sin

(
2πx

a
+ 6π

)
= sin

2πx

a
.

So it is the smallest period which we want to get hold of
and call the period of the function. The greater part of the
abstract theory of periodic functions and the whole of the
applications of the theory to Physical Science are dominated
by an important theorem called Fourier’s Theorem; namely
that, if f(x) be a periodic function with the period a and
if f(x) also satisfies certain conditions, which practically are
always presupposed in functions suggested by natural phe-
nomena, then f(x) can be written as the sum of a set of
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terms in the form

c0 + c1 sin

(
2πx

a
+ e1

)
+ c2 sin

(
4πx

a
+ e2

)
+ c3 sin

(
6πx

a
+ e3

)
+ etc.

In this formula c0, c1, c2, c3, etc., and also e1, e2, e3, etc., are
constants, chosen so as to suit the particular function. Again
we have to ask, How many terms have to be chosen? And
here a new difficulty arises: for we can prove that, though
in some particular cases a definite number will do, yet in
general all we can do is to approximate as closely as we
like to the value of the function by taking more and more
terms. This process of gradual approximation brings us to
the consideration of the theory of infinite series, an essential
part of mathematical theory which we will consider in the
next chapter.

The above method of expressing a periodic function as a
sum of sines is called the “harmonic analysis” of the function.
For example, at any point on the sea coast the tides rise and
fall periodically. Thus at a point near the Straits of Dover
there will be two daily tides due to the rotation of the earth.
The daily rise and fall of the tides are complicated by the fact
that there are two tidal waves, one coming up the English
Channel, and the other which has swept round the North of
Scotland, and has then come southward down the North Sea.
Again some high tides are higher than others: this is due to
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the fact that the Sun has also a tide-generating influence as
well as the Moon. In this way monthly and other periods are
introduced. We leave out of account the exceptional influ-
ence of winds which cannot be foreseen. The general problem
of the harmonic analysis of the tides is to find sets of terms
like those in the expression on page 157 above, such that each
set will give with approximate accuracy the contribution of
the tide-generating influences of one “period” to the height
of the tide at any instant. The argument x will therefore be
the time reckoned from any convenient commencement.

Again, the motion of vibration of a violin string is submit-
ted to a similar harmonic analysis, and so are the vibrations
of the ether and the air, corresponding respectively to waves
of light and waves of sound. We are here in the presence of
one of the fundamental processes of mathematical physics—
namely, nothing less than its general method of dealing with
the great natural fact of Periodicity.



CHAPTER XIV

SERIES

No part of Mathematics suffers more from the triviality
of its initial presentation to beginners than the great sub-
ject of series. Two minor examples of series, namely arith-
metic and geometric series, are considered; these examples
are important because they are the simplest examples of an
important general theory. But the general ideas are never
disclosed; and thus the examples, which exemplify nothing,
are reduced to silly trivialities.

The general mathematical idea of a series is that of a set
of things ranged in order, that is, in sequence; This meaning
is accurately represented in the common use of the term.
Consider for example, the series of English Prime Minis-
ters during the nineteenth century, arranged in the order of
their first tenure of that office within the century. The series
commences with William Pitt, and ends with Lord Rose-
bery, who, appropriately enough, is the biographer of the
first member. We might have considered other serial orders
for the arrangement of these men; for example, according
to their height or their weight. These other suggested or-
ders strike us as trivial in connection with Prime Ministers,
and would not naturally occur to the mind; but abstractly
they are just as good orders as any other. When one order
among terms is very much more important or more obvi-
ous than other orders, it is often spoken of as the order of
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those terms. Thus the order of the integers would always be
taken to mean their order as arranged in order of magnitude.
But of course there is an indefinite number of other ways of
arranging them. When the number of things considered is fi-
nite, the number of ways of arranging them in order is called
the number of their permutations. The number of permu-
tations of a set of n things, where n is some finite integer,
is

n× (n− 1)× (n− 2)× (n− 3)× . . .× 4× 3× 2× 1,

that is to say, it is the product of the first n integers; this
product is so important in mathematics that a special sym-
bolism, is used for it, and it is always written ‘n!.’ Thus, 2! =
2×1 = 2, and 3! = 3×2×1 = 6, and 4! = 4×3×2×1 = 24,
and 5! = 5× 4× 3× 2× 1 = 120. As n increases, the value
of n! increases very quickly; thus 100! is a hundred times as
large as 99!.

It is easy to verify in the case of small values of n that n!
is the number of ways of arranging n things in order. Thus
consider two things a and b; these are capable of the two
orders ab and ba, and 2! = 2.

Again, take three things a, b, and c; these are capable of
the six orders, abc, acb, bac, bca, cab, cba, and 3! = 6. Simi-
larly for the twenty-four orders in which four things a, b, c,
and d, can be arranged.

When we come to the infinite sets of things—like the sets
of all the integers, or all the fractions, or all the real numbers
for instance—we come at once upon the complications of
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the theory of order-types. This subject was touched upon in
Chapter VI. in considering the possible orders of the integers,
and of the fractions, and of the real numbers. The whole
question of order-types forms a comparatively new branch of
mathematics of great importance. We shall not consider it
any further. All the infinite series which we consider now are
of the same order-type as the integers arranged in ascending
order of magnitude, namely, with a first term, and such that
each term has a couple of next-door neighbours, one on either
side, with the exception of the first term which has, of course,
only one next-door neighbour. Thus, if m be any integer (not
zero), there will be always an mth term. A series with a finite
number of terms (say n terms) has the same characteristics
as far as next-door neighbours are concerned as an infinite
series; it only differs from infinite series in having a last term,
namely, the nth.

The important thing to do with a series of numbers—
using for the future “series” in the restricted sense which has
just been mentioned—is to add its successive terms together.

Thus if u1, u2, u3, . . . , un, . . . are respectively the
1st, 2nd, 3rd, 4th, . . . , nth, . . . terms of a series of numbers,
we form successively the series u1, u1 + u2, u1 + u2 + u3,
u1 +u2 +u3 +u4, and so on; thus the sum of the 1st n terms
may be written

u1 + u2 + u3 + · · ·+ un.

If the series has only a finite number of terms, we come at
last in this way to the sum of the whole series of terms. But,
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if the series has an infinite number of terms, this process of
successively forming the sums of the terms never terminates;
and in this sense there is no such thing as the sum of an
infinite series.

But why is it important successively to add the terms
of a series in this way? The answer is that we are here
symbolizing the fundamental mental process of approxima-
tion. This is a process which has significance far beyond
the regions of mathematics. Our limited intellects cannot
deal with complicated material all at once, and our method
of arrangement is that of approximation. The statesman in
framing his speech puts the dominating issues first and lets
the details fall naturally into their subordinate places. There
is, of course, the converse artistic method of preparing the
imagination by the presentation of subordinate or special
details, and then gradually rising to a crisis. In either way
the process is one of gradual summation of effects; and this
is exactly what is done by the successive summation of the
terms of a series. Our ordinary method of stating numbers
is such a process of gradual summation, at least, in the case
of large numbers. Thus 568, 213 presents itself to the mind
as:—

500, 000 + 60, 000 + 8, 000 + 200 + 10 + 3.

In the case of decimal fractions this is so more avowedly.
Thus 3.14159 is:—

3 + 1
10

+ 4
100

+ 1
1000

+ 5
10000

+ 9
100000

.
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Also, 3 and 3+ 1
10

, and 3+ 1
10

+ 4
100

, and 3+ 1
10

+ 4
100

+ 1
1000

, and
3 + 1

10
+ 4

100
+ 1

1000
+ 5

10000
are successive approximations to

the complete result 3.14159. If we read 568, 213 backwards
from right to left, starting with the 3 units, we read it in
the artistic way, gradually preparing the mind for the crisis
of 500, 000.

The ordinary process of numerical multiplication pro-
ceeds by means of the summation of a series, Consider the
computation

342
658

2736
1710

2052

225036

Hence the three lines to be added form a series of which
the first term is the upper line. This series follows the artistic
method of presenting the most important term last, not from
any feeling for art, but because of the convenience gained by
keeping a firm hold on the units’ place, thus enabling us to
omit some 0’s, formally necessary.

But when we approximate by gradually adding the suc-
cessive terms of an infinite series, what are we approximat-
ing to? The difficulty is that the series has no “sum” in
the straightforward sense of the word, because the operation
of adding together its terms can never be completed. The
answer is that we are approximating to the limit of the sum-
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mation of the series, and we must now proceed to explain
what the “limit” of a series is.

The summation of a series approximates to a limit when
the sum of any number of its terms, provided the number be
large enough, is as nearly equal to the limit as you care to ap-
proach. But this description of the meaning of approximat-
ing to a limit evidently will not stand the vigorous scrutiny of
modern mathematics. What is meant by large enough, and
by nearly equal, and by care to approach? All these vague
phrases must be explained in terms of the simple abstract
ideas which alone are admitted into pure mathematics.

Let the successive terms of the series be u1, u2, u3, u4, . . . ,
un, etc., so that un is the nth term of the series. Also let
sn be the sum of the 1st n terms, whatever n may be. So
that:—

s1 = u1, s2 = u1 + u2, s3 = u1 + u2 + u3, and

sn = u1 + u2 + u3 + · · ·+ un.

Then the terms s1, s2, s3, . . . , sn, . . . form a new series,
and the formation of this series is the process of summa-
tion of the original series. Then the “approximation” of the
summation of the original series to a “limit” means the “ap-
proximation of the terms of this new series to a limit.” And
we have now to explain what we mean by the approximation
to a limit of the terms of a series.

Now, remembering the definition (given in Chapter XII.)
of a standard of approximation, the idea of a limit means
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this: l is the limit of the terms of the series s1, s2, s3, . . . ,
sn, . . . , if, corresponding to each real number k, taken as
a standard of approximation, a term sn of the series can
be found so that all succeeding terms (i.e. sn+1, sn+2, etc.)
approximate to l within that standard of approximation. If
another smaller standard k1 be chosen, the term sn may be
too early in the series, and a later term sm with the above
property will then be found.

If this property holds, it is evident that as you go along
to series s1, s2, s3, . . . , sn, . . . from left to right, after a
time you come to terms all of which are nearer to l than any
number which you may like to assign. In other words you
approximate to l as closely as you like. The close connection
of this definition of the limit of a series with the definition of a
continuous function given in Chapter XI. will be immediately
perceived.

Then coming back to the original series u1, u2, u3, . . . ,
un, . . . , the limit of the terms of the series s1, s2, s3, . . . ,
sn, . . . , is called the “sum to infinity” of the original series.
But it is evident that this use of the word “sum” is very
artificial, and we must not assume the analogous properties
to those of the ordinary sum of a finite number of terms
without some special investigation.

Let us look at an example of a “sum to infinity.” Consider
the recurring decimal .1111 . . . . This decimal is merely a way
of symbolizing the “sum to infinity” of the series .1, .01, .001,
.0001, etc. The corresponding series found by summation is
s1 = .1, s2 = .11, s3 = .111, s4 = .1111, etc. The limit of the
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terms of this series is 1
9
; this is easy to see by simple division,

for
1
9

= .1 + 1
90

= .11 + 1
900

= .111 + 1
9000

= etc.

Hence, if 3
17

is given (the k of the definition), .1 and all
succeeding terms differ from 1

9
by less than 3

17
; if 1

1000
is

given (another choice for the k of the definition), .111 and
all succeeding terms differ from 1

9
by less than 1

1000
; and so

on, whatever choice for k be made.
It is evident that nothing that has been said gives the

slightest idea as to how the “sum to infinity” of a series is to
be found. We have merely stated the conditions which such
a number is to satisfy. Indeed, a general method for finding
in all cases the sum to infinity of a series is intrinsically out
of the question, for the simple reason that such a “sum,” as
here defined, does not always exist. Series which possess a
sum to infinity are called convergent, and those which do not
possess a sum to infinity are called divergent.

An obvious example of a divergent series is 1, 2, 3, . . . ,
n . . . , i.e. the series of integers in their order of magnitude.
For whatever number l you try to take as its sum to infinity,
and whatever standard of approximation k you choose, by
taking enough terms of the series you can always make their
sum differ from l by more than k. Again, another example
of a divergent series is 1, 1, 1, etc., i.e. the series of which
each term is equal to 1. Then the sum of n terms is n, and
this sum grows without limit as n increases. Again, another
example of a divergent series is 1, −1, 1, −1, 1, −1, etc.,
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i.e. the series in which the terms are alternately 1 and −1.
The sum of an odd number of terms is 1, and of an even
number of terms is 0. Hence the terms of the series s1, s2,
s3, . . . , sn, . . . do not approximate to a limit, although they
do not increase without limit.

It is tempting to suppose that the condition for u1, u2, . . . ,
un, . . . to have a sum to infinity is that un should decrease
indefinitely as n increases. Mathematics would be a much
easier science than it is, if this were the case. Unfortunately
the supposition is not true.

For example the series

1,
1

2
,

1

3
,

1

4
, . . . ,

1

n
, . . .

is divergent. It is easy to see that this is the case; for consider
the sum of n terms beginning at the (n + 1)th term. These

n terms are
1

n+ 1
,

1

n+ 2
,

1

n+ 3
, . . . ,

1

2n
: there are n of

them and
1

2n
is the least among them. Hence their sum is

greater than n times
1

2n
, i.e. is greater than

1

2
. Now, without

altering the sum to infinity, if it exist, we can add together
neighbouring terms, and obtain the series

1, 1
2
, 1

3
+ 1

4
, 1

5
+ 1

6
+ 1

7
+ 1

8
, etc.,

that is, by what has been said above, a series whose terms
after the 2nd are greater than those of the series,

1, 1
2
, 1

2
, 1

2
, etc.,
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where all the terms after the first are equal. But this series
is divergent. Hence the original series is divergent.∗

This question of divergency shows how careful we must be
in arguing from the properties of the sum of a finite number
of terms to that of the sum of an infinite series. For the
most elementary property of a finite number of terms is that
of course they possess a sum: but even this fundamental
property is not necessarily possessed by an infinite series.
This caution merely states that we must not be misled by the
suggestion of the technical term “sum of an infinite series.”
It is usual to indicate the sum of the infinite series

u1, u2, u3, . . . , un, . . .

by
u1 + u2 + u3 + · · ·+ un + . . . .

We now pass on to a generalization of the idea of a se-
ries, which mathematics, true to its method, makes by use of
the variable. Hitherto, we have only contemplated series in
which each definite term was a definite number. But equally
well we can generalize, and make each term to be some math-
ematical expression containing a variable x. Thus we may
consider the series 1, x, x2, x3, . . . , xn, . . . , and the series

x,
x2

2
,

x3

3
, . . . ,

xn

n
, . . . .

∗Cf. Note C, p. 208.
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In order to symbolize the general idea of any such func-
tion, conceive of a function of x, fn(x) say, which involves
in its formation a variable integer n, then, by giving n the
values 1, 2, 3, etc., in succession, we get the series

f1(x), f2(x), f3(x), . . . , fn(x), . . . .

Such a series may be convergent for some values of x and
divergent for others. It is, in fact, rather rare to find a se-
ries involving a variable x which is convergent for all values
of x,—at least in any particular instance it is very unsafe to
assume that this is the case. For example, let us examine the
simplest of all instances, namely, the “geometrical” series

1, x, x2, x3, . . . , xn, . . . .

The sum of n terms is given by

sn = 1 + x+ x2 + x3 + · · ·+ xn.

Now multiply both sides by x and we get

xsn = x+ x2 + x3 + x4 + · · ·+ xn + xn+1.

Now subtract the last line from the upper line and we get

sn(1− x) = sn − xsn = 1− xn+1,

and hence (if x be not equal to 1)

sn =
1− xn+1

1− x =
1

1− x −
xn+1

1− x.
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Now if x be numerically less than 1, for sufficiently large

values of n,
xn+1

1− x is always numerically less than k, however

k be chosen. Thus, if x be numerically less than 1, the series

1, x, x2, . . . , xn, . . . is convergent, and
1

1− x is its limit.

This statement is symbolized by

1

1− x = 1 + x+ x2 + · · ·+ xn + . . . , (−1 < x < 1).

But if x is numerically greater than 1, or numerically equal
to 1, the series is divergent. In other words, if x lie between
−1 and +1, the series is convergent; but if x be equal to −1
or +1, or if x lie outside the interval −1 to +1, then the series
is divergent. Thus the series is convergent at all “points”
within the interval −1 to +1, exclusive of the end points.

At this stage of our enquiry another question arises. Sup-
pose that the series

f1(x) + f2(x) + f3(x) + · · ·+ fn(x) + . . .

is convergent for all values of x lying within the interval
a to b, i.e. the series is convergent for any value of x which
is greater than a and less than b. Also, suppose we want to
be sure that in approximating to the limit we add together
enough terms to come within some standard of approxima-
tion k. Can we always state some number of terms, say n,
such that, if we take n or more terms to form the sum, then
whatever value x has within the interval we have satisfied
the desired standard of approximation?
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Sometimes we can and sometimes we cannot do this for
each value of k. When we can, the series is called uniformly
convergent throughout the interval, and when we cannot do
so, the series is called non-uniformly convergent throughout
the interval. It makes a great difference to the properties of a
series whether it is or is not uniformly convergent through an
interval. Let us illustrate the matter by the simplest example
and the simplest numbers.

Consider the geometric series

1 + x+ x2 + x3 + · · ·+ xn + . . . .

It is convergent throughout the interval −1 to +1, ex-
cluding the end values x = ±1.

But it is not uniformly convergent throughout this inter-
val. For if sn(x) be the sum of n terms, we have proved that

the difference between sn(x) and the limit
1

1− x is
xn+1

1− x .

Now suppose n be any given number of terms, say 20, and
let k be any assigned standard of approximation, say .001.
Then, by taking x near enough to +1 or near enough to −1,

we can make the numerical value of
x21

1− x to be greater

than .001. Thus 20 terms will not do over the whole in-
terval, though it is more than enough over some parts of
it.

The same reasoning can be applied whatever other num-
ber we take instead of 20, and whatever standard of ap-
proximation instead of .001. Hence the geometric series
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1 + x + x2 + x3 + · · · + xn + . . . is non-uniformly conver-
gent over its whole interval of convergence −1 to +1. But if
we take any smaller interval lying at both ends within the in-
terval −1 to +1, the geometric series is uniformly convergent
within it. For example, take the interval 0 to + 1

10
. Then any

value for n which makes
xn+1

1− x numerically less than k at

these limits for x also serves for all values of x between these

limits, since it so happens that
xn+1

1− x diminishes in numer-

ical value as x diminishes in numerical value. For example,
take k = .001; then, putting x = 1

10
, we find:—

for n = 1,
xn+1

1− x =
( 1
10

)2

1− 1
10

= 1
90

= .0111 . . . ,

for n = 2,
xn+1

1− x =
( 1
10

)3

1− 1
10

= 1
900

= .00111 . . . ,

for n = 3,
xn+1

1− x =
( 1
10

)4

1− 1
10

= 1
9000

= .000111 . . . .

Thus three terms will do for the whole interval, though,
of course, for some parts of the interval it is more than is
necessary. Notice that, because 1 + x+ x2 + · · ·+ xn + . . . is
convergent (though not uniformly) throughout the interval
−1 to +1, for each value of x in the interval some number of
terms n can be found which will satisfy a desired standard of
approximation; but, as we take x nearer and nearer to either
end value +1 or −1, larger and larger values of n have to be
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employed.
It is curious that this important distinction between uni-

form and non-uniform convergence was not published till
1847 by Stokes—afterwards, Sir George Stokes—and later,
independently in 1850 by Seidel, a German mathematician.

The critical points, where non-uniform convergence
comes in, are not necessarily at the limits of the interval
throughout which convergence holds. This is a speciality
belonging to the geometric series.

In the case of the geometric series 1+x+x2+· · ·+xn+. . . ,

a simple algebraic expression
1

1− x can be given for its limit

in its interval of convergence. But this is not always the
case. Often we can prove a series to be convergent within
a certain interval, though we know nothing more about its
limit except that it is the limit of the series. But this is a
very good way of defining a function; viz.. as the limit of an
infinite convergent series, and is, in fact, the way in which
most functions are, or ought to be, defined.

Thus, the most important series in elementary analysis
is

1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+ . . . ,

where n! has the meaning defined earlier in this chapter.
This series can be proved to be absolutely convergent for
all values of x, and to be uniformly convergent within any
interval which we like to take. Hence it has all the comfort-
able mathematical properties which a series should have. It
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is called the exponential series. Denote its sum to infinity
by expx. Thus, by definition,

expx = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+ . . . .

expx is called the exponential function.
It is fairly easy to prove, with a little knowledge of ele-

mentary mathematics, that

(A) (expx)× (exp y) = exp(x+ y).

In other words that

(expx)× (exp y)

= 1 + (x+ y) +
(x+ y)2

2!
+

(x+ y)3

3!
+ · · ·+ (x+ y)n

n!
+ . . . .

This property (A) is an example of what is called an
addition-theorem. When any function [say f(x)] has been
defined, the first thing we do is to try to express f(x + y)
in terms of known functions of x only, and known functions
of y only. If we can do so, the result is called an addition-
theorem. Addition-theorems play a great part in mathemat-
ical analysis. Thus the addition-theorem for the sine is given
by

sin(x+ y) = sin x cos y + cosx sin y,

and for the cosine by

cos(x+ y) = cos x cos y − sinx sin y.
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As a matter of fact the best ways of defining sinx and
cosx are not by the elaborate geometrical methods of the
previous chapter, but as the limits respectively of the series

x− x3

3!
+
x5

5!
− x7

7!
+ etc. . . . ,

and

1− x2

2!
+
x4

4!
− x6

6!
+ etc. . . . ,

so that we put

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ etc. . . . ,

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ etc. . . . .

These definitions are equivalent to the geometrical defini-
tions, and both series can be proved to be convergent for all
values of x, and uniformly convergent throughout any inter-
val. These series for sine and cosine have a general likeness
to the exponential series given above. They are, indeed, inti-
mately connected with it by means of the theory of imaginary
numbers explained in Chapters VII. and VIII.

The graph of the exponential function is given in fig. 29.
It cuts the axis OY at the point y = 1, as evidently it ought
to do, since when x = 0 every term of the series except the
first is zero. The importance of the exponential function is
that it represents any changing physical quantity whose rate
of increase at any instant is a uniform percentage of its value
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at that instant. For example, the above graph represents
the size at any time of a population with a uniform birth-
rate, a uniform death-rate, and no emigration, where the x
corresponds to the time reckoned from any convenient day,
and the y represents the population to the proper scale. The
scale must be such that OA represents the population at the
date which is taken as the origin. But we have here come
upon the idea of “rates of increase” which is the topic for
the next chapter.

An important function nearly allied to the exponential
function is found by putting −x2 for x as the argument in
the exponential function. We thus get exp(−x2). The graph
y = exp(−x2) is given in fig. 30.

The curve, which is something like a cocked hat, is called
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the curve of normal error. Its corresponding function is vi-
tally important to the theory of statistics, and tells us in
many cases the sort of deviations from the average results
which we are to expect.

Another important function is found by combining the
exponential function with the sine, in this way:—

y = exp(−cx)× sin
2πx

p
.

Its graph is given in fig. 31. The points A, B, O, C,
D, E, F , are placed at equal intervals 1

2
p, and an unend-

ing series of them should be drawn forwards and backwards.
This function represents the dying away of vibrations un-
der the influence of friction or of “damping” forces. Apart
from the friction, the vibrations would be periodic, with a
period p; but the influence of the friction makes the extent
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of each vibration smaller than that of the preceding by a
constant percentage of that extent. This combination of the
idea of “periodicity” (which requires the sine or cosine for
its symbolism) and of “constant percentage” (which requires
the exponential function for its symbolism) is the reason for
the form of this function, namely, its form as a product of a
sine-function into an exponential function.



CHAPTER XV

THE DIFFERENTIAL CALCULUS

The invention of the differential calculus marks a crisis
in the history of mathematics. The progress of science is
divided between periods characterized by a slow accumula-
tion of ideas and periods, when, owing to the new material
for thought thus patiently collected, some genius by the in-
vention of a new method or a new point of view, suddenly
transforms the whole subject on to a higher level. These
contrasted periods in the progress of the history of thought
are compared by Shelley to the formation of an avalanche.

The sun-awakened avalanche! whose mass,
Thrice sifted by the storm, had gathered there
Flake after flake,—in heaven-defying minds
As thought by thought is piled, till some great truth
Is loosened, and the nations echo round,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The comparison will bear some pressing. The final burst
of sunshine which awakens the avalanche is not necessar-
ily beyond comparison in magnitude with the other powers
of nature which have presided over its slow formation. The
same is true in science. The genius who has the good fortune
to produce the final idea which transforms a whole region of
thought, does not necessarily excel all his predecessors who
have worked at the preliminary formation of ideas. In con-
sidering the history of science, it is both silly and ungrateful
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to confine our admiration with a gaping wonder to those men
who have made the final advances towards a new epoch.

In the particular instance before us, the subject had a
long history before it assumed its final form at the hands of
its two inventors. There are some traces of its methods even
among the Greek mathematicians, and finally, just before the
actual production of the subject, Fermat (born 1601 a.d.,
and died 1665 a.d.), a distinguished French mathematician,
had so improved on previous ideas that the subject was all
but created by him. Fermat, also, may lay claim to be the
joint inventor of coordinate geometry in company with his
contemporary and countryman, Descartes. It was, in fact,
Descartes from whom the world of science received the new
ideas, but Fermat had certainly arrived at them indepen-
dently.

We need not, however, stint our admiration either for
Newton or for Leibniz. Newton was a mathematician and
a student of physical science, Leibniz was a mathematician
and a philosopher, and each of them in his own department
of thought was one of the greatest men of genius that the
world has known. The joint invention was the occasion of
an unfortunate and not very creditable dispute. Newton
was using the methods of Fluxions, as he called the subject,
in 1666, and employed it in the composition of his Principia,
although in the work as printed any special algebraic nota-
tion is avoided. But he did not print a direct statement of
his method till 1693. Leibniz published his first statement
in 1684. He was accused by Newton’s friends of having got
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it from a MS. by Newton, which he had been shown pri-
vately. Leibniz also accused Newton of having plagiarized
from him. There is now not very much doubt but that both
should have the credit of being independent discoverers. The
subject had arrived at a stage in which it was ripe for dis-
covery, and there is nothing surprising in the fact that two
such able men should have independently hit upon it.

These joint discoveries are quite common in science. Dis-
coveries are not in general made before they have been led
up to by the previous trend of thought, and by that time
many minds are in hot pursuit of the important idea. If
we merely keep to discoveries in which Englishmen are con-
cerned, the simultaneous enunciation of the law of natural
selection by Darwin and Wallace, and the simultaneous dis-
covery of Neptune by Adams and the French astronomer,
Leverrier, at once occur to the mind. The disputes, as to
whom the credit ought to be given, are often influenced by
an unworthy spirit of nationalism. The really inspiring reflec-
tion suggested by the history of mathematics is the unity of
thought and interest among men of so many epochs, so many
nations, and so many races. Indians, Egyptians, Assyrians,
Greeks, Arabs, Italians, Frenchmen, Germans, Englishmen,
and Russians, have all made essential contributions to the
progress of the science. Assuredly the jealous exaltation of
the contribution of one particular nation is not to show the
larger spirit.

The importance of the differential calculus arises from
the very nature of the subject, which is the systematic con-
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sideration of the rates of increase of functions. This idea is
immediately presented to us by the study of nature; velocity
is the rate of increase of the distance travelled, and accelera-
tion is the rate of increase of velocity. Thus the fundamental
idea of change, which is at the basis of our whole perception
of phenomena, immediately suggests the enquiry as to the
rate of change. The familiar terms of “quickly” and “slowly”
gain their meaning from a tacit reference to rates of change.
Thus the differential calculus is concerned with the very key
of the position from which mathematics can be successfully
applied to the explanation of the course of nature.

This idea of the rate of change was certainly in Newton’s
mind, and was embodied in the language in which he ex-

O

Q

Q′

P
(x, y)

A

T N M X

Y

Fig. 32.

plained the subject. It may be doubted, however, whether
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this point of view, derived from natural phenomena, was ever
much in the minds of the preceding mathematicians who pre-
pared the subject for its birth. They were concerned with
the more abstract problems of drawing tangents to curves,
of finding the lengths of curves, and of finding the areas en-
closed by curves. The last two problems, of the rectification
of curves and the quadrature of curves as they are named,
belong to the Integral Calculus, which is however involved
in the same general subject as the Differential Calculus.

The introduction of coordinate geometry makes the two
points of view coalesce. For (cf. fig. 32) let AQP be any
curved line and let PT be the tangent at the point P on
it. Let the axes of coordinates be OX and OY ; and let
y = f(x) be the equation to the curve, so that OM = x, and
PM = y. Now let Q be any moving point on the curve, with
coordinates x1, y1; then y1 = f(x1). And let Q′ be the point
on the tangent with the same abscissa x1; suppose that the
coordinates of Q′ are x1 and y′. Now suppose that N moves
along the axis OX from left to right with a uniform velocity;
then it is easy to see that the ordinate y′ of the point Q′ on
the tangent TP also increases uniformly as Q′ moves along
the tangent in a corresponding way. In fact it is easy to
see that the ratio of the rate of increase of Q′N to the rate
of increase of ON is in the ratio of Q′N to TN , which is
the same at all points of the straight line. But the rate of
increase of QN , which is the rate of increase of f(x1), varies
from point to point of the curve so long as it is not straight.
As Q passes through the point P , the rate of increase of f(x1)
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(where x1 coincides with x for the moment) is the same as
the rate of increase of y′ on the tangent at P . Hence, if we
have a general method of determining the rate of increase of
a function f(x) of a variable x, we can determine the slope
of the tangent at any point (x, y) on a curve, and thence can
draw it. Thus the problems of drawing tangents to a curve,
and of determining the rates of increase of a function are
really identical.

It will be noticed that, as in the cases of Conic Sections
and Trigonometry, the more artificial of the two points of
view is the one in which the subject took its rise. The really
fundamental aspect of the science only rose into prominence
comparatively late in the day. It is a well-founded historical
generalization, that the last thing to be discovered in any
science is what the science is really about. Men go on groping
for centuries, guided merely by a dim instinct and a puzzled
curiosity, till at last “some great truth is loosened.”

Let us take some special cases in order to familiarize our-
selves with the sort of ideas which we want to make precise.
A train is in motion—how shall we determine its velocity at
some instant, let us say, at noon? We can take an interval
of five minutes which includes noon, and measure how far
the train has gone in that period. Suppose we find it to be
five miles, we may then conclude that the train was running
at the rate of 60 miles per hour. But five miles is a long
distance, and we cannot be sure that just at noon the train
was moving at this pace. At noon it may have been running
70 miles per hour, and afterwards the brake may have been
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put on. It will be safer to work with a smaller interval, say
one minute, which includes noon, and to measure the space
traversed during that period. But for some purposes greater
accuracy may be required, and one minute may be too long.
In practice, the necessary inaccuracy of our measurements
makes it useless to take too small a period for measurement.
But in theory the smaller the period the better, and we are
tempted to say that for ideal accuracy an infinitely small
period is required. The older mathematicians, in particular
Leibniz, were not only tempted, but yielded to the tempta-
tion, and did say it. Even now it is a useful fashion of speech,
provided that we know how to interpret it into the language
of common sense. It is curious that, in his exposition of the
foundations of the calculus, Newton, the natural scientist, is
much more philosophical than Leibniz, the philosopher, and
on the other hand, Leibniz provided the admirable notation
which has been so essential for the progress of the subject.

Now take another example within the region of pure
mathematics. Let us proceed to find the rate of increase of
the function x2 for any value x of its argument. We have
not yet really defined what we mean by rate of increase. We
will try and grasp its meaning in relation to this particular
case. When x increases to x + h, the function x2 increases
to (x+h)2; so that the total increase has been (x+h)2−x2,
due to an increase h in the argument. Hence throughout the
interval x to (x+ h) the average increase of the function per
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unit increase of the argument is
(x+ h)2 − x2

h
. But

(x+ h)2 = x2 + 2hx+ h2,

and therefore

(x+ h)2 − x2
h

=
2hx+ h2

h
= 2x+ h.

Thus 2x + h is the average increase of the function x2 per
unit increase in the argument, the average being taken over
by the interval x to x + h. But 2x + h depends on h, the
size of the interval. We shall evidently get what we want,
namely the rate of increase at the value x of the argument,
by diminishing h more and more. Hence in the limit when
h has decreased indefinitely, we say that 2x is the rate of
increase of x2 at the value x of the argument.

Here again we are apparently driven up against the idea
of infinitely small quantities in the use of the words “in the
limit when h has decreased indefinitely.” Leibniz held that,
mysterious as it may sound, there were actually existing such
things as infinitely small quantities, and of course infinitely
small numbers corresponding to them. Newton’s language
and ideas were more on the modern lines; but he did not
succeed in explaining the matter with such explicitness so as
to be evidently doing more than explain Leibniz’s ideas in
rather indirect language. The real explanation of the sub-
ject was first given by Weierstrass and the Berlin School
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of mathematicians about the middle of the nineteenth cen-
tury. But between Leibniz and Weierstrass a copious lit-
erature, both mathematical and philosophical, had grown
up round these mysterious infinitely small quantities which
mathematics had discovered and philosophy proceeded to
explain. Some philosophers, Bishop Berkeley, for instance,
correctly denied the validity of the whole idea, though for
reasons other than those indicated here. But the curious
fact remained that, despite all criticisms of the foundations
of the subject, there could be no doubt but that the mathe-
matical procedure was substantially right. In fact, the sub-
ject was right, though the explanations were wrong. It is this
possibility of being right, albeit with entirely wrong explana-
tions as to what is being done, that so often makes external
criticism—that is so far as it is meant to stop the pursuit
of a method—singularly barren and futile in the progress of
science. The instinct of trained observers, and their sense of
curiosity, due to the fact that they are obviously getting at
something, are far safer guides. Anyhow the general effect
of the success of the Differential Calculus was to generate a
large amount of bad philosophy, centring round the idea of
the infinitely small. The relics of this verbiage may still be
found in the explanations of many elementary mathemati-
cal text-books on the Differential Calculus. It is a safe rule
to apply that, when a mathematical or philosophical author
writes with a misty profundity, he is talking nonsense.
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Newton would have phrased the question by saying that,
as h approaches zero, in the limit 2x + h becomes 2x. It
is our task so to explain this statement as to show that it
does not in reality covertly assume the existence of Leibniz’s
infinitely small quantities. In reading over the Newtonian
method of statement, it is tempting to seek simplicity by
saying that 2x + h is 2x, when h is zero. But this will not
do; for it thereby abolishes the interval from x to x+h, over
which the average increase was calculated. The problem is,
how to keep an interval of length h over which to calculate
the average increase, and at the same time to treat h as if it
were zero. Newton did this by the conception of a limit, and
we now proceed to give Weierstrass’s explanation of its real
meaning.

In the first place notice that, in discussing 2x + h, we
have been considering x as fixed in value and h as varying.
In other words x has been treated as a “constant” variable, or
parameter, as explained in Chapter IX.; and we have really
been considering 2x + h as a function of the argument h.
Hence we can generalize the question on hand, and ask what
we mean by saying that the function f(h) tends to the limit l,
say, as its argument h tends to the value zero. But again
we shall see that the special value zero for the argument
does not belong to the essence of the subject; and again we
generalize still further, and ask, what we mean by saying
that the function f(h) tends to the limit l as h tends to the
value a.
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Now, according to the Weierstrassian explanation the
whole idea of h tending to the value a, though it gives a
sort of metaphorical picture of what we are driving at, is
really off the point entirely. Indeed it is fairly obvious that,
as long as we retain anything like “h tending to a,” as a fun-
damental idea, we are really in the clutches of the infinitely
small; for we imply the notion of h being infinitely near to a.
This is just what we want to get rid of.

Accordingly, we shall yet again restate our phrase to be
explained, and ask what we mean by saying that the limit of
the function f(h) at a is l.

The limit of f(h) at a is a property of the neighbourhood
of a, where “neighbourhood” is used in the sense defined
in Chapter XI. during the discussion of the continuity of
functions. The value of the function f(h) at a is f(a); but the
limit is distinct in idea from the value, and may be different
from it, and may exist when the value has not been defined.
We shall also use the term “standard of approximation” in
the sense in which it is defined in Chapter XI. In fact, in
the definition of “continuity” given towards the end of that
chapter we have practically defined a limit. The definition
of a limit is:—

A function f(x) has the limit l at a value a of its argu-
ment x, when in the neighbourhood of a its values approxi-
mate to l within every standard of approximation.

Compare this definition with that already given for con-
tinuity, namely:—
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A function f(x) is continuous at a value a of its argument,
when in the neighbourhood of a its values approximate to its
value at a within every standard of approximation.

It is at once evident that a function is continuous at a
when (i) it possesses a limit at a, and (ii) that limit is equal
to its value at a. Thus the illustrations of continuity which
have been given at the end of Chapter XI. are illustrations
of the idea of a limit, namely, they were all directed to prov-
ing that f(a) was the limit of f(x) at a for the functions
considered and the value of a considered. It is really more
instructive to consider the limit at a point where a func-
tion is not continuous. For example, consider the function of
which the graph is given in fig. 20 of Chapter XI. This func-
tion f(x) is defined to have the value 1 for all values of the
argument except the integers 0, 1, 2, 3, etc., and for these
integral values it has the value 0. Now let us think of its limit
when x = 3. We notice that in the definition of the limit the
value of the function at a (in this case, a = 3) is excluded.
But, excluding f(3), the values of f(x), when x lies within
any interval which (i) contains 3 not as an end-point, and
(ii) does not extend so far as 2 and 4, are all equal to 1; and
hence these values approximate to 1 within every standard
of approximation. Hence 1 is the limit of f(x) at the value 3
of the argument x, but by definition f(3) = 0.

This is an instance of a function which possesses both
a value and a limit at the value 3 of the argument, but the
value is not equal to the limit. At the end of Chapter XI. the
function x2 was considered at the value 2 of the argument.
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Its value at 2 is 22, i.e. 4, and it was proved that its limit
is also 4. Thus here we have a function with a value and a
limit which are equal.

Finally we come to the case which is essentially impor-
tant for our purposes, namely, to a function which possesses
a limit, but no defined value at a certain value of its ar-
gument. We need not go far to look for such a function,
2x

x
will serve our purpose. Now in any mathematical book,

we might find the equation,
2x

x
= 2, written without hesita-

tion or comment. But there is a difficulty in this; for when

x is zero,
2x

x
=

0

0
; and

0

0
has no defined meaning. Thus the

value of the function
2x

x
at x = 0 has no defined meaning.

But for every other value of x, the value of the function
2x

x

is 2. Thus the limit of
2x

x
at x = 0 is 2, and it has no value

at x = 0. Similarly the limit of
x2

x
at x = a is a whatever

a may be, so that the limit of
x2

x
at x = 0 is 0. But the

value of
x2

x
at x = 0 takes the form

0

0
, which has no defined

meaning. Thus the function
x2

x
has a limit but no value at 0.

We now come back to the problem from which we started
this discussion on the nature of a limit. How are we going to
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define the rate of increase of the function x2 at any value x
of its argument. Our answer is that this rate of increase is

the limit of the function
(x+ h)2 − x2

h
at the value zero for

its argument h. (Note that x is here a “constant.”) Let us
see how this answer works in the light of our definition of a
limit. We have

(x+ h)2 − x2
h

=
2hx+ h2

h
=
h(2x+ h)

h
.

Now in finding the limit of
h(2x+ h)

h
at the value 0 of

the argument h, the value (if any) of the function at h = 0 is
excluded. But for all values of h, except h = 0, we can divide

through by h. Thus the limit of
h(2x+ h)

h
at h = 0 is the

same as that of 2x + h at h = 0. Now, whatever standard
of approximation k we choose to take, by considering the
interval from −1

2
k to +1

2
k we see that, for values of h which

fall within it, 2x+ h differs from 2x by less than 1
2
k, that is

by less than k. This is true for any standard k. Hence in
the neighbourhood of the value 0 for h, 2x+h approximates
to 2x within every standard of approximation, and therefore
2x is the limit of 2x + h at h = 0. Hence by what has been

said above 2x is the limit of
(x+ h)2 − x2

h
at the value 0

for h. It follows, therefore, that 2x is what we have called
the rate of increase of x2 at the value x of the argument.
Thus this method conducts us to the same rate of increase
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for x2 as did the Leibnizian way of making h grow “infinitely
small.”

The more abstract terms “differential coefficient,” or “de-
rived function,” are generally used for what we have hith-
erto called the “rate of increase” of a function. The gen-
eral definition is as follows: the differential coefficient of
the function f(x) is the limit, if it exist, of the function
f(x+ h)− f(x)

h
of the argument h at the value 0 of its ar-

gument.
How have we, by this definition and the subsidiary defi-

nition of a limit, really managed to avoid the notion of “in-
finitely small numbers” which so worried our mathematical
forefathers? For them the difficulty arose because on the one
hand they had to use an interval x to x + h over which to
calculate the average increase, and, on the other hand, they
finally wanted to put h = 0. The result was they seemed to
be landed into the notion of an existent interval of zero size.
Now how do we avoid this difficulty? In this way—we use
the notion that corresponding to any standard of approxi-
mation, some interval with such and such properties can be
found. The difference is that we have grasped the impor-
tance of the notion of “the variable,” and they had not done
so. Thus, at the end of our exposition of the essential no-
tions of mathematical analysis, we are led back to the ideas
with which in Chapter II. we commenced our enquiry—that
in mathematics the fundamentally important ideas are those
of “some things” and “any things.”



CHAPTER XVI

GEOMETRY

Geometry, like the rest of mathematics, is abstract.
In it the properties of the shapes and relative positions of
things are studied. But we do not need to consider who is
observing the things, or whether he becomes acquainted with
them by sight or touch or hearing. In short, we ignore all
particular sensations. Furthermore, particular things such
as the Houses of Parliament, or the terrestrial globe are ig-
nored. Every proposition refers to any things with such and
such geometrical properties. Of course it helps our imagina-
tion to look at particular examples of spheres and cones and
triangles and squares. But the propositions do not merely
apply to the actual figures printed in the book, but to any
such figures.

Thus geometry, like algebra, is dominated by the ideas of
“any” and “some” things. Also, in the same way it studies
the interrelations of sets of things. For example, consider
any two triangles ABC and DEF .

What relations must exist between some of the parts of
these triangles, in order that the triangles may be in all re-
spects equal? This is one of the first investigations under-
taken in all elementary geometries. It is a study of a certain
set of possible correlations between the two triangles. The
answer is that the triangles are in all respects equal, if:—
Either, (a) Two sides of the one and the included angle are
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respectively equal to two sides of the other and the included
angle:

Or, (b) Two angles of the one and the side joining them
are respectively equal to two angles of the other and the side
joining them:

Or, (c) Three sides of the one are respectively equal to
three sides of the other.

This answer at once suggests a further enquiry. What
is the nature of the correlation between the triangles, when
the three angles of the one are respectively equal to the three
angles of the other? This further investigation leads us on
to the whole theory of similarity (cf. Chapter XIII.), which
is another type of correlation.

Again, to take another example, consider the internal
structure of the triangle ABC. Its sides and angles are inter-
related—the greater angle is opposite to the greater side,
and the base angles of an isosceles triangle are equal. If
we proceed to trigonometry this correlation receives a more
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exact determination in the familiar shape

sinA

a
=

sinB

b
=

sinC

c
,

a2 = b2 + c2 − 2bc cosA, with two similar formulæ.
Also there is the still simpler correlation between the an-

gles of the triangle, namely, that their sum is equal to two
right angles; and between the three sides, namely, that the
sum of the lengths of any two is greater than the length of
the third.

Thus the true method to study geometry is to think of
interesting simple figures, such as the triangle, the paral-
lelogram, and the circle, and to investigate the correlations
between their various parts. The geometer has in his mind
not a detached proposition, but a figure with its various parts
mutually inter-dependent. Just as in algebra, he generalizes
the triangle into the polygon, and the side into the conic
section. Or, pursuing a converse route, he classifies triangles
according as they are equilateral, isosceles, or scalene, and
polygons according to their number of sides, and conic sec-
tions according as they are hyperbolas, ellipses, or parabolas.

The preceding examples illustrate how the fundamental
ideas of geometry are exactly the same as those of algebra;
except that algebra deals with numbers and geometry with
lines, angles, areas, and other geometrical entities. This fun-
damental identity is one of the reasons why so many geomet-
rical truths can be put into an algebraic dress. Thus if A, B,
and C are the numbers of degrees respectively in the angles
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of the triangle ABC, the correlation between the angles is
represented by the equation

A+B + C = 180◦;

and if a, b, c are the number of feet respectively in the three
sides, the correlation between the sides is represented by a <
b+ c, b < c+ a, c < a+ b. Also the trigonometrical formulæ
quoted above are other examples of the same fact. Thus the
notion of the variable and the correlation of variables is just
as essential in geometry as it is in algebra.

But the parallelism between geometry and algebra can
be pushed still further, owing to the fact that lengths, areas,
volumes, and angles are all measurable; so that, for exam-
ple, the size of any length can be determined by the number
(not necessarily integral) of times which it contains some ar-
bitrarily known unit, and similarly for areas, volumes, and
angles. The trigonometrical formulæ, given above, are exam-
ples of this fact. But it receives its crowning application in
analytical geometry. This great subject is often misnamed as
Analytical Conic Sections, thereby fixing attention on merely
one of its subdivisions. It is as though the great science of
Anthropology were named the Study of Noses, owing to the
fact that noses are a prominent part of the human body.

Though the mathematical procedures in geometry and
algebra are in essence identical and intertwined in their de-
velopment, there is necessarily a fundamental distinction be-
tween the properties of space and the properties of number—
in fact all the essential difference between space and number.
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The “spaciness” of space and the “numerosity” of number
are essentially different things, and must be directly appre-
hended. None of the applications of algebra to geometry or
of geometry to algebra go any step on the road to obliterate
this vital distinction.

One very marked difference between space and number
is that the former seems to be so much less abstract and
fundamental than the latter. The number of the archangels
can be counted just because they are things. When we once
know that their names are Raphael, Gabriel, and Michael,
and that these distinct names represent distinct beings, we
know without further question that there are three of them.
All the subtleties in the world about the nature of angelic
existences cannot alter this fact, granting the premisses.

But we are still quite in the dark as to their relation to
space. Do they exist in space at all? Perhaps it is equally
nonsense to say that they are here, or there, or anywhere, or
everywhere. Their existence may simply have no relation to
localities in space. Accordingly, while numbers must apply
to all things, space need not do so.

The perception of the locality of things would appear to
accompany, or be involved in many, or all, of our sensations.
It is independent of any particular sensation in the sense
that it accompanies many sensations. But it is a special pe-
culiarity of the things which we apprehend by our sensations.
The direct apprehension of what we mean by the positions of
things in respect to each other is a thing sui generis, just as
are the apprehensions of sounds, colours, tastes, and smells.
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At first sight therefore it would appear that mathematics, in
so far as it includes geometry in its scope, is not abstract in
the sense in which abstractness is ascribed to it in Chapter I.

This, however, is a mistake; the truth being that the
“spaciness” of space does not enter into our geometrical rea-
soning at all. It enters into the geometrical intuitions of
mathematicians in ways personal and peculiar to each in-
dividual. But what enter into the reasoning are merely
certain properties of things in space, or of things forming
space, which properties are completely abstract in the sense
in which abstract was defined in Chapter I.; these proper-
ties do not involve any peculiar space-apprehension or space-
intuition or space-sensation. They are on exactly the same
basis as the mathematical properties of number. Thus the
space-intuition which is so essential an aid to the study of
geometry is logically irrelevant: it does not enter into the
premisses when they are properly stated, nor into any step
of the reasoning. It has the practical importance of an ex-
ample, which is essential for the stimulation of our thoughts.
Examples are equally necessary to stimulate our thoughts on
number. When we think of “two” and “three” we see strokes
in a row, or balls in a heap, or some other physical aggrega-
tion of particular things. The peculiarity of geometry is the
fixity and overwhelming importance of the one particular ex-
ample which occurs to our minds. The abstract logical form
of the propositions when fully stated is, “If any collections of
things have such and such abstract properties, they also have
such and such other abstract properties.” But what appears
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before the mind’s eye is a collection of points, lines, surfaces,
and volumes in the space: this example inevitably appears,
and is the sole example which lends to the proposition its
interest. However, for all its overwhelming importance, it is
but an example.

Geometry, viewed as a mathematical science, is a division
of the more general science of order. It may be called the
science of dimensional order; the qualification “dimensional”
has been introduced because the limitations, which reduce it
to only a part of the general science of order, are such as to
produce the regular relations of straight lines to planes, and
of planes to the whole of space.

It is easy to understand the practical importance of space
in the formation of the scientific conception of an external
physical world. On the one hand our space-perceptions are
intertwined in our various sensations and connect them to-
gether. We normally judge that we touch an object in the
same place as we see it; and even in abnormal cases we touch
it in the same space as we see it, and this is the real funda-
mental fact which ties together our various sensations. Ac-
cordingly, the space perceptions are in a sense the common
part of our sensations. Again it happens that the abstract
properties of space form a large part of whatever is of spa-
tial interest. It is not too much to say that to every property
of space there corresponds an abstract mathematical state-
ment. To take the most unfavourable instance, a curve may
have a special beauty of shape: but to this shape there will
correspond some abstract mathematical properties which go



INTRODUCTION TO MATHEMATICS 201

with this shape and no others.
Thus to sum up: (1) the properties of space which are

investigated in geometry, like those of number, are proper-
ties belonging to things as things, and without special ref-
erence to any particular mode of apprehension: (2) Space-
perception accompanies our sensations, perhaps all of them,
certainly many; but it does not seem to be a necessary qual-
ity of things that they should all exist in one space or in any
space.



CHAPTER XVII

QUANTITY

In the previous chapter we pointed out that lengths are
measurable in terms of some unit length, areas in term of a
unit area, and volumes in terms of a unit volume.

When we have a set of things such as lengths which are
measurable in terms of any one of them, we say that they
are quantities of the same kind. Thus lengths are quantities
of the same kind, so are areas, and so are volumes. But an
area is not a quantity of the same kind as a length, nor is
it of the same kind as a volume. Let us think a little more
on what is meant by being measurable, taking lengths as an
example.

Lengths are measured by the foot-rule. By transporting
the foot-rule from place to place we judge of the equality
of lengths. Again, three adjacent lengths, each of one foot,
form one whole length of three feet. Thus to measure lengths
we have to determine the equality of lengths and the ad-
dition of lengths. When some test has been applied, such
as the transporting of a foot-rule, we say that the lengths
are equal; and when some process has been applied, so as
to secure lengths being contiguous and not overlapping, we
say that the lengths have been added to form one whole
length. But we cannot arbitrarily take any test as the test
of equality and any process as the process of addition. The
results of operations of addition and of judgments of equality
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must be in accordance with certain preconceived conditions.
For example, the addition of two greater lengths must yield
a length greater than that yielded by the addition of two
smaller lengths. These preconceived conditions when accu-
rately formulated may be called axioms of quantity. The
only question as to their truth or falsehood which can arise
is whether, when the axioms are satisfied, we necessarily get
what ordinary people call quantities. If we do not, then the
name “axioms of quantity” is ill-judged—that is all.

These axioms of quantity are entirely abstract, just as are
the mathematical properties of space. They are the same
for all quantities, and they presuppose no special mode of
perception. The ideas associated with the notion of quantity
are the means by which a continuum like a line, an area, or a
volume can be split up into definite parts. Then these parts
are counted; so that numbers can be used to determine the
exact properties of a continuous whole.

Our perception of the flow of time and of the succession of
events is a chief example of the application of these ideas of
quantity. We measure time (as has been said in considering
periodicity) by the repetition of similar events—the burning
of successive inches of a uniform candle, the rotation of the
earth relatively to the fixed stars, the rotation of the hands of
a clock are all examples of such repetitions. Events of these
types take the place of the foot-rule in relation to lengths.
It is not necessary to assume that events of any one of these
types are exactly equal in duration at each recurrence. What
is necessary is that a rule should be known which will enable
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us to express the relative durations of, say, two examples of
some type. For example, we may if we like suppose that the
rate of the earth’s rotation is decreasing, so that each day
is longer than the preceding by some minute fraction of a
second. Such a rule enables us to compare the length of any
day with that of any other day. But what is essential is that
one series of repetitions, such as successive days, should be
taken as the standard series; and, if the various events of
that series are not taken as of equal duration, that a rule
should be stated which regulates the duration to be assigned
to each day in terms of the duration of any other day.

What then are the requisites which such a rule ought to
have? In the first place it should lead to the assignment of
nearly equal durations to events which common sense judges
to possess equal durations. A rule which made days of vi-
olently different lengths, and which made the speeds of ap-
parently similar operations vary utterly out of proportion to
the apparent minuteness of their differences, would never do.
Hence the first requisite is general agreement with common
sense. But this is not sufficient absolutely to determine the
rule, for common sense is a rough observer and very easily
satisfied. The next requisite is that minute adjustments of
the rule should be so made as to allow of the simplest possible
statements of the laws of nature. For example, astronomers
tell us that the earth’s rotation is slowing down, so that each
day gains in length by some inconceivably minute fraction of
a second. Their only reason for their assertion (as stated
more fully in the discussion of periodicity) is that without it
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they would have to abandon the Newtonian laws of motion.
In order to keep the laws of motion simple, they alter the
measure of time. This is a perfectly legitimate procedure so
long as it is thoroughly understood.

What has been said above about the abstract nature of
the mathematical properties of space applies with appropri-
ate verbal changes to the mathematical properties of time.
A sense of the flux of time accompanies all our sensations
and perceptions, and practically all that interests us in re-
gard to time can be paralleled by the abstract mathemati-
cal properties which we ascribe to it. Conversely what has
been said about the two requisites for the rule by which
we determine the length of the day, also applies to the rule
for determining the length of a yard measure—namely, the
yard measure appears to retain the same length as it moves
about. Accordingly, any rule must bring out that, apart
from minute changes, it does remain of invariable length;
Again, the second requisite is this, a definite rule for minute
changes shall be stated which allows of the simplest expres-
sion of the laws of nature. For example, in accordance with
the second requisite the yard measures are supposed to ex-
pand and contract with changes of temperature according to
the substances which they are made of.

Apart from the facts that our sensations are accompa-
nied with perceptions of locality and of duration, and that
lines, areas, volumes, and durations, are each in their way
quantities, the theory of numbers would be of very subordi-
nate use in the exploration of the laws of the Universe, As
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it is, physical science reposes on the main ideas of number,
quantity, space, and time. The mathematical sciences as-
sociated with them do not form the whole of mathematics,
but they are the substratum of mathematical physics as at
present existing.



NOTES

A (p. 45).—In reading these equations it must be noted
that a bracket is used in mathematical symbolism to mean
that the operations within it are to be performed first. Thus
(1 + 3) + 2 directs us first to add 3 to 1, and then to add 2
to the result; and 1 + (3 + 2) directs us first to add 2 to 3,
and then to add the result to 1. Again a numerical example
of equation (5) is

2× (3 + 4) = (2× 3) + (2× 4).

We perform first the operations in brackets and obtain

2× 7 = 6 + 8

which is obviously true.

B (p. 110).—This fundamental ratio
SP

PN
is called the

eccentricity of the curve. The shape of the curve, as distinct
from its scale or size, depends upon the value of its eccen-
tricity. Thus it is wrong to think of ellipses in general or of
hyperbolas in general as having in either case one definite
shape. Ellipses with different eccentricities have different
shapes, and their sizes depend upon the lengths of their ma-
jor axes. An ellipse with small eccentricity is very nearly a
circle, and an ellipse of eccentricity only slightly less than
unity is a long flat oval. All parabolas have the same eccen-
tricity and are therefore of the same shape, though they can
be drawn to different scales.
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C (p. 168).—If a series with all its terms positive is con-
vergent, the modified series found by making some terms
positive and some negative according to any definite rule is
also convergent. Each one of the set of series thus found, in-
cluding the original series, is called “absolutely convergent.”
But it is possible for a series with terms partly positive and
partly negative to be convergent, although the corresponding
series with all its terms positive is divergent. For example,
the series

1− 1
2

+ 1
3
− 1

4
+ etc.

is convergent though we have just proved that

1 + 1
2

+ 1
3

+ 1
4

+ etc.

is divergent. Such convergent series, which are not abso-
lutely convergent, are much more difficult to deal with than
absolutely convergent series.
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NOTE ON THE STUDY OF MATHEMATICS

The difficulty that beginners find in the study of this sci-
ence is due to the large amount of technical detail which has
been allowed to accumulate in the elementary text-books,
obscuring the important ideas.

The first subjects of study, apart from a knowledge of
arithmetic which is presupposed, must be elementary geom-
etry and elementary algebra. The courses in both subjects
should be short, giving only the necessary ideas; the algebra
should be studied graphically, so that in practice the ideas of
elementary coordinate geometry are also being assimilated.
The next pair of subjects should be elementary trigonometry
and the coordinate geometry of the straight line and circle.
The latter subject is a short one; for it really merges into
the algebra. The student is then prepared to enter upon
conic sections, a very short course of geometrical conic sec-
tions and a longer one of analytical conics. But in all these
courses great care should be taken not to overload the mind
with more detail than is necessary for the exemplification of
the fundamental ideas.

The differential calculus and afterwards the integral cal-
culus now remain to be attacked on the same system. A good
teacher will already have illustrated them by the considera-
tion of special cases in the course on algebra and coordinate
geometry. Some short book on three-dimensional geometry
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must be also read.
This elementary course of mathematics is sufficient for

some types of professional career. It is also the necessary
preliminary for any one wishing to study the subject for its
intrinsic interest. He is now prepared to commence on a
more extended course. He must not, however, hope to be
able to master it as a whole. The science has grown to such
vast proportions that probably no living mathematician can
claim to have achieved this.

Passing to the serious treatises on the subject to be read
after this preliminary course, the following may be men-
tioned: Cremona’s Pure Geometry (English Translation,
Clarendon Press, Oxford), Hobson’s Treatise on Trigonom-
etry, Chrystal’s Treatise on Algebra (2 volumes), Salmon’s
Conic Sections, Lamb’s Differential Calculus, and some
book on Differential Equations. The student will probably
not desire to direct equal attention to all these subjects, but
will study one or more of them, according as his interest
dictates. He will then be prepared to select more advanced
works for himself, and to plunge into the higher parts of
the subject. If his interest lies in analysis, he should now
master an elementary treatise on the theory of Functions of
the Complex Variable; if he prefers to specialize in Geome-
try, he must now proceed to the standard treatises on the
Analytical Geometry of three dimensions. But at this stage
of his career in learning he will not require the advice of this
note.

I have deliberately refrained from mentioning any elemen-
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tary works. They are very numerous, and of various merits,
but none of such outstanding superiority as to require special
mention by name to the exclusion of all the others.



INDEX

Abel, 127

Abscissa, 74

Absolute Convergence, 208

Abstract Nature of Geometry,
199 et seqq.

Abstractness (defined), 2, 5

Adams, 181

Addition-Theorem, 174

Ahmes, 54

Alexander the Great, 103, 104

Algebra, Fundamental Laws
of, 45

Ampère, 22

Analytical Conic Sections,
197

Apollonius of Perga, 106, 108

Approximation, 161 et seqq.

Arabic Notation, 43 et seqq.

Archimedes, 24 et seqq.

Argument of a Function, 118

Aristotle, 19, 29, 103

Astronomy, 111, 141, 142

Axes, 101

Axioms of Quantity,
203 et seqq.

Bacon, 127

Ball, W. W. R., 43

Beaconsfield, Lord, 28

Berkeley, Bishop, 187

Bhaskara, 43

Cantor, Georg, 60

Circle, 96, 105, 146 et seqq.

Circular Cylinder, 116

Clerk Maxwell, 22, 23

Columbus, 98

Compact Series, 57

Complex Quantities, 88

Conic Sections, 103 et seqq.

Constants, 52, 94

Continuous Functions,
122 et seqq.

Continuous Functions
(defined), 132

Convergence, Absolute, 208

Convergent, 166 et seqq.

Coordinate Geometry,
90 et seqq.

Coordinates, 74

Copernicus, 31, 111

Cosine, 148 et seqq.

Coulomb, 22

Cross Ratio, 113



INDEX 213

Darwin, 112, 181

Derived Function, 193

Descartes, 74, 90, 94, 98, 180

Differential Calculus,
179 et seqq.

Differential Coefficient, 193

Directrix, 110

Discontinuous Functions,
122 et seqq.

Distance, 19

Divergent, 166 et seqq.

Dynamical Explanation, 5, 6,
33 et seqq.

Dynamics, 19, 29 et seqq.

Eccentricity, 207

Electric Current, 21

Electricity, 20 et seqq.

Electromagnetism, 20 et seqq.

Ellipse, 31, 97, 104 et seqq.

Euclid, 92

Exponential Series,
173 et seqq.

Faraday, 23

Fermat, 180

Fluxions, 180

Focus, 97, 110

Force, 19

Form, Algebraic, 49 et seqq.,
63, 94

Fourier’s Theorem, 156
Fractions, 54 et seqq.
Franklin, 21, 98
Function, 118 et seqq.

Galileo, 19, 29 et seqq., 98
Galvani, 21
Generality in Mathematics,

63
Geometrical Series,

169 et seqq.
Geometry, 24, 194 et seqq.
Gilbert, Dr., 20
Graphs, 120 et seqq.
Gravitation, 18, 112

Halley, 113
Harmonic Analysis, 157
Harriot, Thomas, 49
Herz, 23
Hiero, 25
Hipparchus, 141
Hyperbola, 105 et seqq.

Imaginary Numbers,
67 et seqq.

Imaginary Quantities, 88
Incommensurable Ratios,

54 et seqq.



INDEX 214

Infinitely Small Quantities,
186 et seqq.

Integral Calculus, 183

Interval, 129 et seqq.

Kepler, 31, 111, 112

Kepler’s Laws, 112

Laputa, 3

Laws of Motion, 136 et seqq.,
205

Leibniz, 8, 180 et seqq.

Leonardo da Vinci, 29

Leverrier, 181

Light, 23

Limit of a Function,
188 et seqq.

Limit of a Series, 163 et seqq.

Limits, 58

Locus, 97 et seqq., 114

Macaulay, 127

Malthus, 112

Marcellus, 25

Mass, 19

Mechanics, 33

Menaechmus, 103

Motion, First Law of, 30

Neighbourhood, 130 et seqq.

Newton, 3, 8, 19, 22, 25, 26,
30, 32, 112, 180 et seqq.

Non-Uniform Convergence,
171 et seqq.

Normal Error, Curve of, 176
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